Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/benedekrozemberczki/pytorch_geometric_temporal

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)
https://github.com/benedekrozemberczki/pytorch_geometric_temporal

deep-learning gcn gnn graph-convolution graph-convolutional-networks graph-embedding graph-neural-networks network-embedding network-science node-embedding pytorch spatial-analysis spatial-data spatio-temporal-analysis spatio-temporal-data spatiotemporal temporal-data temporal-graphs temporal-networks

Last synced: 4 days ago
JSON representation

PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models (CIKM 2021)

Awesome Lists containing this project

README

        

[pypi-image]: https://badge.fury.io/py/torch-geometric-temporal.svg
[pypi-url]: https://pypi.python.org/pypi/torch-geometric-temporal
[size-image]: https://img.shields.io/github/repo-size/benedekrozemberczki/pytorch_geometric_temporal.svg
[size-url]: https://github.com/benedekrozemberczki/pytorch_geometric_temporal/archive/master.zip
[build-image]: https://github.com/benedekrozemberczki/pytorch_geometric_temporal/workflows/CI/badge.svg
[build-url]: https://github.com/benedekrozemberczki/pytorch_geometric_temporal/actions?query=workflow%3ACI
[docs-image]: https://readthedocs.org/projects/pytorch-geometric-temporal/badge/?version=latest
[docs-url]: https://pytorch-geometric-temporal.readthedocs.io/en/latest/?badge=latest
[coverage-image]: https://codecov.io/gh/benedekrozemberczki/pytorch_geometric_temporal/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/benedekrozemberczki/pytorch_geometric_temporal?branch=master



-----------------------------------------------------

[![PyPI Version][pypi-image]][pypi-url]
[![Docs Status][docs-image]][docs-url]
[![Code Coverage][coverage-image]][coverage-url]
[![Build Status][build-image]][build-url]
[![Arxiv](https://img.shields.io/badge/ArXiv-2104.07788-orange.svg)](https://arxiv.org/abs/2104.07788)
[![benedekrozemberczki](https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)](https://twitter.com/intent/follow?screen_name=benrozemberczki)

**[Documentation](https://pytorch-geometric-temporal.readthedocs.io)** | **[External Resources](https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/resources.html)** | **[Datasets](https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/introduction.html#discrete-time-datasets)**

*PyTorch Geometric Temporal* is a temporal (dynamic) extension library for [PyTorch Geometric](https://github.com/rusty1s/pytorch_geometric).

The library consists of various dynamic and temporal geometric deep learning, embedding, and spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemological forecasting, sharing economy, energy production and web traffic management domains. Finally, you can also create your own datasets.

The package interfaces well with [Pytorch Lightning](https://pytorch-lightning.readthedocs.io) which allows training on CPUs, single and multiple GPUs out-of-the-box. Take a look at this [introductory example](https://github.com/benedekrozemberczki/pytorch_geometric_temporal/blob/master/examples/recurrent/lightning_example.py) of using PyTorch Geometric Temporal with Pytorch Lightning.

We also provide detailed examples for each of the [recurrent](https://github.com/benedekrozemberczki/pytorch_geometric_temporal/tree/master/examples/recurrent) models and [notebooks](https://github.com/benedekrozemberczki/pytorch_geometric_temporal/tree/master/notebooks) for the attention based ones.

--------------------------------------------------------------------------------

**Case Study Tutorials**

We provide in-depth case study tutorials in the [Documentation](https://pytorch-geometric-temporal.readthedocs.io/en/latest/), each covers an aspect of PyTorch Geometric Temporal’s functionality.

**Incremental Training**: [Epidemiological Forecasting Case Study](https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/introduction.html#epidemiological-forecasting)

**Cumulative Training**: [Web Traffic Management Case Study](https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/introduction.html#web-traffic-prediction)

--------------------------------------------------------------------------------

**Citing**

If you find *PyTorch Geometric Temporal* and the new datasets useful in your research, please consider adding the following citation:

```bibtex
@inproceedings{rozemberczki2021pytorch,
author = {Benedek Rozemberczki and Paul Scherer and Yixuan He and George Panagopoulos and Alexander Riedel and Maria Astefanoaei and Oliver Kiss and Ferenc Beres and Guzman Lopez and Nicolas Collignon and Rik Sarkar},
title = {{PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models}},
year = {2021},
booktitle={Proceedings of the 30th ACM International Conference on Information and Knowledge Management},
pages = {4564–4573},
}
```

--------------------------------------------------------------------------------

**A simple example**

PyTorch Geometric Temporal makes implementing Dynamic and Temporal Graph Neural Networks quite easy - see the accompanying [tutorial](https://pytorch-geometric-temporal.readthedocs.io/en/latest/notes/introduction.html#applications). For example, this is all it takes to implement a recurrent graph convolutional network with two consecutive [graph convolutional GRU](https://arxiv.org/abs/1612.07659) cells and a linear layer:

```python
import torch
import torch.nn.functional as F
from torch_geometric_temporal.nn.recurrent import GConvGRU

class RecurrentGCN(torch.nn.Module):

def __init__(self, node_features, num_classes):
super(RecurrentGCN, self).__init__()
self.recurrent_1 = GConvGRU(node_features, 32, 5)
self.recurrent_2 = GConvGRU(32, 16, 5)
self.linear = torch.nn.Linear(16, num_classes)

def forward(self, x, edge_index, edge_weight):
x = self.recurrent_1(x, edge_index, edge_weight)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.recurrent_2(x, edge_index, edge_weight)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.linear(x)
return F.log_softmax(x, dim=1)
```
--------------------------------------------------------------------------------

**Methods Included**

In detail, the following temporal graph neural networks were implemented.

**Recurrent Graph Convolutions**

* **[DCRNN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.dcrnn.DCRNN)** from Li *et al.*: [Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting](https://arxiv.org/abs/1707.01926) (ICLR 2018)

* **[GConvGRU](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.gconv_gru.GConvGRU)** from Seo *et al.*: [Structured Sequence Modeling with Graph Convolutional Recurrent Networks](https://arxiv.org/abs/1612.07659) (ICONIP 2018)

* **[GConvLSTM](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.gconv_lstm.GConvLSTM)** from Seo *et al.*: [Structured Sequence Modeling with Graph Convolutional Recurrent Networks](https://arxiv.org/abs/1612.07659) (ICONIP 2018)

* **[GC-LSTM](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.gc_lstm.GCLSTM)** from Chen *et al.*: [GC-LSTM: Graph Convolution Embedded LSTM for Dynamic Link Prediction](https://arxiv.org/abs/1812.04206) (CoRR 2018)

* **[LRGCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.lrgcn.LRGCN)** from Li *et al.*: [Predicting Path Failure In Time-Evolving Graphs](https://arxiv.org/abs/1905.03994) (KDD 2019)

* **[DyGrEncoder](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.dygrae.DyGrEncoder)** from Taheri *et al.*: [Learning to Represent the Evolution of Dynamic Graphs with Recurrent Models](https://dl.acm.org/doi/10.1145/3308560.3316581)

* **[EvolveGCNH](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.evolvegcnh.EvolveGCNH)** from Pareja *et al.*: [EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs](https://arxiv.org/abs/1902.10191)

* **[EvolveGCNO](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.evolvegcno.EvolveGCNO)** from Pareja *et al.*: [EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs](https://arxiv.org/abs/1902.10191)

* **[T-GCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.temporalgcn.TGCN)** from Zhao *et al.*: [T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction](https://arxiv.org/abs/1811.05320)

* **[A3T-GCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.attentiontemporalgcn.A3TGCN)** from Zhu *et al.*: [A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic Forecasting](https://arxiv.org/abs/2006.11583)

* **[AGCRN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.agcrn.AGCRN)** from Bai *et al.*: [Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting](https://arxiv.org/abs/2007.02842) (NeurIPS 2020)

* **[MPNN LSTM](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.mpnn_lstm.MPNNLSTM)** from Panagopoulos *et al.*: [Transfer Graph Neural Networks for Pandemic Forecasting](https://arxiv.org/abs/2009.08388) (AAAI 2021)

**Attention Aggregated Temporal Graph Convolutions**

* **[STGCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.stgcn.STConv)** from Yu *et al.*: [Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting](https://arxiv.org/abs/1709.04875) (IJCAI 2018)

* **[ASTGCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.astgcn.ASTGCN)** from Guo *et al.*: [Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/3881) (AAAI 2019)

* **[MSTGCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.mstgcn.MSTGCN)** from Guo *et al.*: [Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/3881) (AAAI 2019)

* **[GMAN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.gman.GMAN)** from Zheng *et al.*: [GMAN: A Graph Multi-Attention Network for Traffic Prediction](https://arxiv.org/pdf/1911.08415.pdf) (AAAI 2020)

* **[MTGNN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.mtgnn.MTGNN)** from Wu *et al.*: [Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks](https://arxiv.org/abs/2005.11650) (KDD 2020)

* **[2S-AGCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.tsagcn.AAGCN)** from Shi *et al.*: [Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition](https://arxiv.org/abs/1805.07694) (CVPR 2019)

* **[DNNTSP](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.dnntsp.DNNTSP)** from Yu *et al.*: [Predicting Temporal Sets with Deep Neural Networks](https://dl.acm.org/doi/abs/10.1145/3394486.3403152) (KDD 2020)

**Auxiliary Graph Convolutions**

* **[TemporalConv](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.stgcn.TemporalConv)** from Yu *et al.*: [Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting](https://arxiv.org/abs/1709.04875) (IJCAI 2018)

* **[DConv](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.dcrnn.DConv)** from Li *et al.*: [Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting](https://arxiv.org/abs/1707.01926) (ICLR 2018)

* **[ChebConvAttention](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.attention.astgcn.ChebConvAttention)** from Guo *et al.*: [Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting](https://ojs.aaai.org/index.php/AAAI/article/view/3881) (AAAI 2019)

* **[AVWGCN](https://pytorch-geometric-temporal.readthedocs.io/en/latest/modules/root.html#torch_geometric_temporal.nn.recurrent.agcrn.AVWGCN)** from Bai *et al.*: [Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting](https://arxiv.org/abs/2007.02842) (NeurIPS 2020)

--------------------------------------------------------------------------------

Head over to our [documentation](https://pytorch-geometric-temporal.readthedocs.io) to find out more about installation, creation of datasets and a full list of implemented methods and available datasets.
For a quick start, check out the [examples](https://pytorch-geometric-temporal.readthedocs.io) in the `examples/` directory.

If you notice anything unexpected, please open an [issue](https://benedekrozemberczki/pytorch_geometric_temporal/issues). If you are missing a specific method, feel free to open a [feature request](https://github.com/benedekrozemberczki/pytorch_geometric_temporal/issues).

--------------------------------------------------------------------------------

**Installation**

First install [pytorch][pytorch-install] and [pytorch-geometric][pyg-install]
and then run

```sh
pip install torch-geometric-temporal
```

[pytorch-install]: https://pytorch.org/get-started/locally/
[pyg-install]: https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html

--------------------------------------------------------------------------------

**Running tests**

```
$ python -m pytest test
```
--------------------------------------------------------------------------------

**License**

- [MIT License](https://github.com/benedekrozemberczki/pytorch_geometric_temporal/blob/master/LICENSE)