Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/benhamner/Metrics
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave
https://github.com/benhamner/Metrics
Last synced: 1 day ago
JSON representation
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave
- Host: GitHub
- URL: https://github.com/benhamner/Metrics
- Owner: benhamner
- License: other
- Created: 2012-06-12T15:52:50.000Z (over 12 years ago)
- Default Branch: master
- Last Pushed: 2023-01-11T06:01:24.000Z (almost 2 years ago)
- Last Synced: 2024-10-29T15:39:57.451Z (15 days ago)
- Language: Python
- Homepage:
- Size: 784 KB
- Stars: 1,628
- Watchers: 87
- Forks: 454
- Open Issues: 36
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
**Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories.**
![Build Status](https://travis-ci.org/benhamner/Metrics.png)
**Metrics** provides implementations of various supervised machine learning evaluation metrics in the following languages:
- [**Python**](https://github.com/benhamner/Metrics/tree/master/Python) ```easy_install ml_metrics```
- [**R**](https://github.com/benhamner/Metrics/tree/master/R) ```install.packages("Metrics")``` from the R prompt
- [**Haskell**](https://github.com/benhamner/Metrics/tree/master/Haskell) ```cabal install Metrics```
- [**MATLAB / Octave**](https://github.com/benhamner/Metrics/tree/master/MATLAB) (clone the repo & run setup from the MATLAB command line)For more detailed installation instructions, see the README for each implementation.
EVALUATION METRICS
------------------Evaluation MetricPythonRHaskellMATLAB / Octave
Absolute Error (AE)✓✓✓✓
Average Precision at K (APK, AP@K)✓✓✓✓
Area Under the ROC (AUC)✓✓✓✓
Classification Error (CE)✓✓✓✓
F1 Score (F1) ✓
Gini ✓
Levenshtein✓ ✓✓
Log Loss (LL)✓✓✓✓
Mean Log Loss (LogLoss)✓✓✓✓
Mean Absolute Error (MAE)✓✓✓✓
Mean Average Precision at K (MAPK, MAP@K)✓✓✓✓
Mean Quadratic Weighted Kappa✓✓ ✓
Mean Squared Error (MSE)✓✓✓✓
Mean Squared Log Error (MSLE)✓✓✓✓
Normalized Gini ✓
Quadratic Weighted Kappa✓✓ ✓
Relative Absolute Error (RAE) ✓
Root Mean Squared Error (RMSE)✓✓✓✓
Relative Squared Error (RSE) ✓
Root Relative Squared Error (RRSE) ✓
Root Mean Squared Log Error (RMSLE)✓✓✓✓
Squared Error (SE)✓✓✓✓
Squared Log Error (SLE)✓✓✓✓TO IMPLEMENT
------------- F1 score
- Multiclass log loss
- Lift
- Average Precision for binary classification
- precision / recall break-even point
- cross-entropy
- True Pos / False Pos / True Neg / False Neg rates
- precision / recall / sensitivity / specificity
- mutual informationHIGHER LEVEL TRANSFORMATIONS TO HANDLE
--------------------------------------- GroupBy / Reduce
- Weight individual samples or groupsPROPERTIES METRICS CAN HAVE
---------------------------(Nonexhaustive and to be added in the future)
- Min or Max (optimize through minimization or maximization)
- Binary Classification
- Scores predicted class labels
- Scores predicted ranking (most likely to least likely for being in one class)
- Scores predicted probabilities
- Multiclass Classification
- Scores predicted class labels
- Scores predicted probabilities
- Regression
- Discrete Rater Comparison (confusion matrix)