Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/benmarwick/ctv-archaeology

CRAN Task View: Archaeological Science
https://github.com/benmarwick/ctv-archaeology

archaeological-science archaeology cran-task data-science r task-view

Last synced: 1 day ago
JSON representation

CRAN Task View: Archaeological Science

Awesome Lists containing this project

README

        

CRAN Task View: Archaeological Science
--------------------------------------

[![DOI](https://zenodo.org/badge/29466157.svg)](https://zenodo.org/badge/latestdoi/29466157)

Maintainer:
Ben Marwick
Contact:
benmarwick at gmail.com
Version:
2022-11-08

This CRAN Task View contains a list of packages useful for scientific work in Archaeology, grouped by topic. Note that this is not an official CRAN Task View, just one I have prepared for my own convenience, so it includes some packages only on GitHub and other non-CRAN resources I find useful. Many of the most highly recommended packages listed here can be installed in a single step by installing the [tidyverse](https://cran.r-project.org/package=tidyverse) package.

Besides these packages, a very wide variety of functions suitable for scientific work in Archaeology is provided by both the basic R system (and its set of recommended core packages), and a number of other packages on the Comprehensive R Archive Network (CRAN) and [GitHub](http://www.rdocumentation.org/packages?type=github). Consequently, several of the other CRAN Task Views may contain suitable packages, in particular the [Spatial](http://cran.rstudio.com/web/views/Spatial.html), [Spatio-temporal](http://cran.rstudio.com/web/views/SpatioTemporal.html), [Cluster analysis](http://cran.r-project.org/web/views/Cluster.html), [Multivariate Statistics](http://cran.r-project.org/web/views/Multivariate.html), [Bayesian inference](http://cran.r-project.org/web/views/Bayesian.html), [Visualization](http://cran.r-project.org/web/views/Graphics.html), and [Reproducible research](http://cran.r-project.org/web/views/ReproducibleResearch.html) Task Views.

Contributions to this Task View are always welcome, and encouraged. The source file for this particular task view file resides in a GitHub repository (see below), and pull requests are the preferred method for contributions.

## Table of Contents

- [CRAN Task View: Archaeological Science](#cran-task-view-archaeological-science)
- [Data acquisition](#data-acquisition)
- [Data manipulation](#data-manipulation)
- [Visualising data](#visualising-data)
- [Multi-panel plot layouts](#multi-panel-plot-layouts)
- [Analysis in general](#analysis-in-general)
- [Analysis of categorical and count data](#analysis-of-categorical-and-count-data)
- [Linear, generalized linear models, and non-linear models](#linear-generalized-linear-models-and-non-linear-models)
- [Multivariate statistics](#multivariate-statistics)
- [Making maps and using R as a Geographical Information System](#making-maps-and-using-r-as-a-geographical-information-system)
- [Environmental & geological analysis](#environmental--geological-analysis)
- [Dating](#dating)
- [Evolution, phylogenetics, morphometrics, and shape analysis](#evolution-phylogenetics-morphometrics-and-shape-analysis)
- [Image analysis](#image-analysis)
- [Simulations](#simulations)
- [Network analysis](#network-analysis)
- [Mortality Analysis](#mortality-analysis)
- [Skyscape Archaeology](#skyscape-archaeology)
- [Reproducible research](#reproducible-research)
- [Writing Reproducible manuscripts](#writing-reproducible-manuscripts)
- [Developing R code and packages](#developing-r-code-and-packages)
- [Datasets](#datasets)
- [Places to go for help](#places-to-go-for-help)
- [Related links:](#related-links)
- [Publications that include R code](#publications-that-include-r-code)
- [Contributors](#contributors)

## Data acquisition

- The ideal method is to export your spreadsheets from Excel (or whatever program you made them) as CSVs (comma-separated-values, a simple, non-proprietary plain-text-based format that is very transparent, being human-readable, easily machine-processable and suitable for archival storage) and read them into R using the base function `read.csv()`. Data in other types of plain text files can be read in with `read.table()`.
- To read Microsoft Excel files into R there is [readxl]( https://github.com/hadley/readxl). OpenDocument Spreadsheet files can be read into R using [readODS](http://cran.rstudio.com/web/packages/readODS/index.html).
- For working with untidy and/or complex Excel spreadsheets (i.e. many tables in one sheet, coloured cells, cells with formulas, etc.), use [jailbreakr](https://github.com/rsheets/jailbreakr), [xlsxtractr](https://github.com/hrbrmstr/xlsxtractr), [tidyxl](https://github.com/nacnudus/tidyxl) and [unpivotr](https://github.com/nacnudus/unpivotr)
- Text data (as in sentences and paragraphs) can be read in and analysed with the [tm](http://cran.rstudio.com/web/packages/tm/index.html) package or [tidytext](https://cran.r-project.org/package=tidytext). If the text is in a Microsoft Word file, use [textreadr](https://CRAN.R-project.org/package=textreadr), or if it's a PDF file, use [pdftools](https://CRAN.R-project.org/package=pdftools). Text in image files can be extracted with [tesseract](https://cran.r-project.org/package=tesseract)
-   For quickly reading in a very large number of CSV files, or very large CSV files, use `fread()` from the [data.table](http://cran.rstudio.com/web/packages/data.table/index.html) package or functions in the [readr](https://github.com/hadley/readr) package. For plain text (CSV, TSV, etc) files that are too big to fit in memory, use [chunked](https://CRAN.R-project.org/package=chunked) to read and operate on them in small chunks.
- [RODBC](http://cran.rstudio.com/web/packages/RODBC/index.html), [RMySQL](http://cran.rstudio.com/web/packages/RMySQL/index.html), [RPostgreSQL](http://cran.rstudio.com/web/packages/RPostgreSQL/index.html), [RSQLite](http://cran.rstudio.com/web/packages/RSQLite/index.html) for connecting R to SQL databases. [RODBC](http://cran.rstudio.com/web/packages/RODBC/index.html) can connect to Microsoft Access databases.
- The [haven](https://github.com/hadley/haven) and [foreign](http://cran.rstudio.com/web/packages/foreign/index.html) packages can be used for reading and writing files from certain versions of Minitab, S, SAS, SPSS, Stata, Systat and Weka.
- ESRI shapefiles can be read using [rgdal](http://cran.rstudio.com/web/packages/rgdal/index.html) or [maptools](http://cran.rstudio.com/web/packages/maptools/index.html)
- R can receive data directly from the web using [rvest](http://cran.rstudio.com/web/packages/rvest/index.html), [httr](http://cran.rstudio.com/web/packages/httr/index.html), [XML](http://cran.rstudio.com/web/packages/XML/index.html), [jsonlite](http://cran.rstudio.com/web/packages/jsonlite/index.html), [RSelenium](http://cran.r-project.org/web/packages/RSelenium/index.html) (requires Selenium 2.0 Remote WebDriver). R can be programmed to be a web-scraper using rvest and/or Rselenium. The [Web Technologies](http://cran.r-project.org/web/views/WebTechnologies.html) task view gives more details.
- Google spreadsheets can be read into R using the [googlesheets](https://github.com/jennybc/googlesheets) package
- Tables can be read directly from Microsoft Word documents with [docxtractr](https://cran.r-project.org/web/packages/docxtractr), and from PDF documents with [tabulizer](https://github.com/leeper/tabulizer)
- Datasets from the Open Context repository can be browsed and read into R using the [opencontext](https://github.com/ropensci/opencontext) package

## Data manipulation

- [dplyr](http://cran.rstudio.com/web/packages/dplyr/index.html) and [data.table](http://cran.rstudio.com/web/packages/data.table/index.html) for splitting the data up by groups, applying some common or custom functions, and combining the output back into a convenient form (ie. typical aggregation, splitting and summarising operations). Both packages are fast on very large datasets.
- For cleaning, examining, and making quick summaries of data, [janitor](https://github.com/sfirke/janitor), [skimr](https://github.com/ropenscilabs/skimr), [statar](https://github.com/matthieugomez/statar), and [xda](https://github.com/ujjwalkarn/xda) maybe useful. [tabplot](https://github.com/mtennekes/tabplot/) has functions for exploratory data visualisation of tables
- [tidyr](http://cran.rstudio.com/web/packages/tidyr/index.html) for rearranging the data from long to wide forms, and more complex reshaping.
- [purrr](http://cran.rstudio.com/web/packages/purrr/index.html) simplifies working with lists, applying functions to list elements and collecting the results
- [broom](http://cran.rstudio.com/web/packages/broom/index.html) takes the output of many built-in functions in R, such as `lm` or `t.test`, and turns them into tidy data frames.
- [measurements](https://cran.r-project.org/web/packages/measurements/), [convertr](https://github.com/ropenscilabs/convertr), and [units](https://cran.r-project.org/web/packages/units) converts between metric and imperial units, or calculate a dimension's unknown value from other dimensions' measurements.

## Visualising data

- [ggplot2](http://cran.rstudio.com/web/packages/ggplot2/index.html) produces a very wide variety of attractive plots with a highly flexible and logical syntax.
- Extensions include [ggbiplot](https://github.com/vqv/ggbiplot) (PCA biplots with ellipses), [GGally](http://cran.r-project.org/web/packages/GGally/index.html) (plot matrices), [ggtern](http://www.ggtern.com/) (ternary plots), [ggfortify](https://github.com/sinhrks/ggfortify) (many methods for plotting PCA, clustering, linear model output, etc., using ggplot2),[ggalt](https://github.com/hrbrmstr/ggalt) (more geoms, coords, stats, scales and fonts, including splines, 1d and 2d densities), [waffle](https://github.com/hrbrmstr/waffle) (for square pie charts), [ggraph](https://github.com/thomasp85/ggraph) for treemaps, [ggfan](https://CRAN.R-project.org/package=ggfan) for fanplots, [tidybayes](https://github.com/mjskay/tidybayes) for plotting output of Bayesian analysis, [ggridges](https://CRAN.R-project.org/package=ggridges) for ridge plots, [ggalt](https://CRAN.R-project.org/package=ggalt) for many additional geoms, [ggrepel](https://github.com/slowkow/ggrepel) for moving overlapping text labels away from each other, and [shadowtext](https://cran.r-project.org/web/packages/shadowtext/) for a halo around text to make it more readable on busy plots.
- For showing distributions across several categories: [ggforce](https://CRAN.R-project.org/package=ggforce), [ggbeeswarm](https://github.com/eclarke/ggbeeswarm), [vipor](https://github.com/sherrillmix/vipor), [sinaplot](https://cran.r-project.org/web/packages/sinaplot)
- For isolines and isobands use [ggisoband](https://github.com/clauswilke/ggisoband)
- [plotly](https://github.com/ropensci/plotly) and [ggiraph](https://github.com/davidgohel/ggiraph) make ggplots interactive with mouse-over pop-ups, zooming, click-actions, etc. [scatterD3](https://github.com/juba/scatterD3) makes highly interactive scatter plots
- [circlize](https://cran.r-project.org/web/packages/circlize/index.html) implements Circos in R for circular and chord plots. Rose plots can be made with [ggplot2](http://cran.rstudio.com/web/packages/ggplot2/index.html), Schmidt diagrams can be made with the `net` function in [RFOC](https://cran.r-project.org/web/packages/RFOC) or the `Stereo*` functions in [RockFab](https://cran.r-project.org/web/packages/RockFab/)
- [plotrix](http://cran.rstudio.com/web/packages/plotrix/index.html) has the function `battleship.plot()` to make Ford's battleship diagrams.
- [ggmap](http://cran.rstudio.com/web/packages/ggmap/index.html) combines the spatial information of static maps from Google Maps, OpenStreetMap, Stamen Maps or CloudMade Maps with the layered grammar of graphics implementation of ggplot2
- Stratigraphic data plots can be drawn using [tidypaleo](https://github.com/paleolimbot/tidypaleo), the `Stratiplot()` function in [analogue](http://cran.rstudio.com/web/packages/analogue/index.html) and functions `strat.plot()` and strat.plot.simple in the [rioja](http://cran.rstudio.com/web/packages/rioja/index.html) package. The rioja package also includes `chclust()` for stratigraphically constrained clustering, and related dendrogram plotting methods.
- [rgl](http://cran.rstudio.com/web/packages/rgl/index.html) and [plotly](https://github.com/ropensci/plotly) for interactive 3D plots, and [scatterplot3d](http://cran.rstudio.com/web/packages/scatterplot3d/index.html) also draws 3D point clouds.
- [tabplot](https://github.com/mtennekes/tabplot/) for exploratory data visualisation of tables
- For schematic diagrams, such as Harris matrices, [DiagrammeR](https://github.com/rich-iannone/DiagrammeR) is useful.
- For colour schemes in plots: [viridis](https://github.com/sjmgarnier/viridis) for perfectly perceptually-uniform colours, [RColorBrewer](http://cran.r-project.org/web/packages/RColorBrewer/index.html), [wesanderson](http://cran.r-project.org/web/packages/wesanderson/index.html), and [munsell](http://cran.r-project.org/web/packages/munsell/index.html) for exploring and using the Munsell colour system, and for some extra themes for ggplot2, including some Tufte-inspired themes, see [ggthemes](http://cran.r-project.org/web/packages/ggthemes/index.html).

### Multi-panel plot layouts

- To combine and align multiple ggplot2 plots (and other image types) in one panel:
- use [cowplot](https://cran.r-project.org/web/packages/cowplot/index.html) for a publication-ready theming and labelling
- [patchwork](https://github.com/thomasp85/patchwork) for a simple grammar using `+`, `/`, etc
- [gridExtra](http://cran.rstudio.com/web/packages/gridExtra/index.html) for configuring layouts with a matrix
- [multipanelfigure](https://CRAN.R-project.org/package=multipanelfigure), perhaps the most versatile for combining different elements

## Analysis in general

- Base R, especially the stats package, has a lot of functionality useful for analysing archaeological data. For example, `chisq.test()`, `prop.test()`, `binom.test()`, `t.test()`, `wilcox.test()`, `kruskal.test()`, `mcnemar.test()`, `cor.test()`, `power.t.test()`, `power.prop.test()`, `power.anova.test()` among many others. [Hmisc](http://cran.r-project.org/web/packages/Hmisc/index.html) includes bootstrapping, setting confidence intervals, and power analysis functions, see also [psych](http://cran.r-project.org/web/packages/psych/index.html) for useful descriptive statistics and visualizations.
- [corrr](https://cran.rstudio.com/web/packages/corrr/) contains many convenient functions for exploring correlations.
- Bayesian and resampling variants of these also exist, for example in the [MCMCpack](http://cran.r-project.org/web/packages/MCMCpack/index.html), [BEST](http://cran.r-project.org/web/packages/BEST/index.html) (requires JAGS), [Bayesian First Aid](https://github.com/rasmusab/bayesian_first_aid) (also requires JAGS) packages (see the [Bayesian](http://cran.r-project.org/web/views/Bayesian.html) task view for more) and the [coin](http://cran.rstudio.com/web/packages/coin/index.html), [boot](http://cran.r-project.org/web/packages/boot/index.html), and [bootstrap](http://cran.r-project.org/web/packages/bootstrap/index.html) packages (see also [msm](http://cran.r-project.org/web/packages/msm/index.html)).
- For analysing change over time, [bcp](http://cran.r-project.org/web/packages/bcp/index.html), [changepoint](http://cran.r-project.org/web/packages/changepoint/index.html), [ecp](http://cran.r-project.org/web/packages/ecp/index.html), [AnomalyDetection](https://github.com/twitter/AnomalyDetection) and [BreakoutDetection](https://github.com/twitter/BreakoutDetection) provide functions for detecting distributional changes within time-ordered observations.
- [abc](http://cran.r-project.org/web/packages/abc/index.html) provides functions for parameter estimation, model selection, and goodness-of-fit.

## Analysis of categorical and count data

- The `table()` function in the base package and the `xtabs()` and `ftable()` functions in the stats package construct contingency tables.
- The `chisq.test()` and `fisher.test()` functions in the stats package may be used to test for independence in two-way contingency tables
- The `assocstats()` function in the vcd package computes the Pearson chi-Squared test, the Likelihood Ratio chi-Squared test, the phi coefficient, the contingency coefficient and Cramer's V for plain or stratified contingency tables.

## Linear, generalized linear models, and non-linear models

- Linear models can be fitted (via OLS) with `lm()` (from stats). The [modelr](https://github.com/hadley/modelr) package has helper functions for pipeable modelling (e.g. cross-validation, bootstrapping). For data from a non-normal population, or when there are apparent outliers, [lmPerm](https://cran.r-project.org/web/packages/lmPerm) computes linear models using permutation tests.
- Bayesian fitting of linear and non-linear models is possible with [rstanarm](https://cran.r-project.org/web/packages/rstanarm), [brms](https://github.com/paul-buerkner/brms), and [rethinking](https://github.com/rmcelreath/rethinking).
- The `nls()` function (from stats) as well as the package [minpack.lm](http://cran.rstudio.com/web/packages/minpack.lm/index.html) allow the solution of nonlinear least squares problems.
- Correlated and/or unequal variances can be modeled using the `gnls()` function of the [nlme](http://cran.rstudio.com/web/packages/nlme/index.html) package and by [nlreg](http://cran.rstudio.com/web/packages/nlreg/index.html). The nlme package is supported by Pinheiro & Bates (2000) Mixed-effects Models in S and S-PLUS, Springer, New York.
- The generic `anova()` function in the [stats](http://cran.rstudio.com/web/packages/stats/index.html) package constructs sequential analysis of variance and analysis of deviance tables, and can compute F and likelihood-ratio tests for nested models. (It is typical for other classes of statistical models in R to have anova methods as well.) The generic anova function in the [car](http://cran.rstudio.com/web/packages/car/index.html) package (associated with Fox, An R and S-PLUS Companion to Applied Regression, Sage, 2002) constructs so-called "Type-II" and "Type-III" tests for linear and generalized linear models.
- [cerUB](https://github.com/Andros-Spica/cerUB) for multivariate statistic protocols for integrating archaeometric data (geochemical, mineralogical, petrographic)

## Multivariate statistics

- The [Cluster task view](http://cran.r-project.org/web/views/Cluster.html) provides a more detailed discussion of available cluster analysis methods and appropriate R functions and packages.
- [caret](http://cran.rstudio.com/web/packages/caret/index.html) and [FactoMiner](http://cran.rstudio.com/web/packages/FactoMiner/index.html) are popular packages with a suite of multivariate methods
- [aplpack](http://cran.rstudio.com/web/packages/aplpack/index.html) provides `bagplots()`
- `lda()` and `qda()` within [MASS](http://cran.rstudio.com/web/packages/MASS/index.html) provide linear and quadratic discrimination respectively.

Model Testing and Validation

- [caret](http://cran.rstudio.com/web/packages/caret/index.html) provides many functions for model training, testing, and validation. There is also Max Kuhn's excellent companion book called "Applied Predictive Modeling" (Springer, also available as an ebook). The [mlr](http://cran.r-project.org/web/packages/mlr/index.html) package also provides classification, regression, and machine learning methods.
- Other packages that enable tuning and evaluation of models include bootstrap and [Hmisc](http://cran.rstudio.com/web/packages/Hmisc/index.html)
- The [CVtools](http://cran.rstudio.com/web/packages/CVtools/index.html) and [DAAG](http://cran.rstudio.com/web/packages/DAAD/index.html) packages include cross-validation functions for evaluating the optimality of tuning parameters such as sample sizes or number of predictors etc., in statistical models
- [rsample](https://CRAN.R-project.org/package=rsample) creates different types of resamples and corresponding classes for their analysis

Hierarchical cluster analysis

- The package [cluster](http://cran.rstudio.com/web/packages/cluster/index.html) provides functions for cluster analysis following the methods described in Kaufman and Rousseeuw (1990) Finding Groups in data: an introduction to cluster analysis, Wiley, New York
- There are also `hclust()` in the stats package and `hcluster()` in [amap](http://cran.rstudio.com/web/packages/amap/index.html)
- [pvclust](http://cran.rstudio.com/web/packages/pvclust/index.html) is a package for assessing the uncertainty in hierarchical cluster analysis. It provides approximately unbiased p-values as well as bootstrap p-values. Enhanced plotting is also available through the [dendextend](http://cran.rstudio.com/web/packages/dendextend/index.html) package.
- [dendextend](http://cran.rstudio.com/web/packages/dendextend/index.html) Offers a set of functions for extending dendrogram objects in R. It allows to both adjust a tree's graphical parameters - the color, size, type, etc of its branches, nodes and labels - as well as visually (and statistically) compare different dendrograms to one another.

Other partitioning methods

- `kmeans()` in stats provides k-means clustering and cmeans() in [e1071](http://cran.rstudio.com/web/packages/e1071/index.html) implements a fuzzy version of the k-means algorithm. The recommended package [cluster](http://cran.rstudio.com/web/packages/cluster/index.html) also provides functions for various partitioning methodologies.
- To compute the optimum number of clusters there is the `pamk()` function in the [fpc](http://cran.rstudio.com/web/packages/fpc/index.html) package, `cascadeKM()` in [vegan](http://cran.rstudio.com/web/packages/vegan/index.html), `Mclust()` in [mclust](http://cran.rstudio.com/web/packages/mclust/index.html), `apcluster()` in [apcluster](http://cran.rstudio.com/web/packages/apcluster/index.html)
- Self-organising maps can be produced with the [kohonen](https://CRAN.R-project.org/package=kohonen)
- Percolation analysis can be produced with the [percopackage](https://github.com/SCSchmidt/percopackage)

Mixture models and model-based cluster analysis

- [mclust](http://cran.rstudio.com/web/packages/mclust/index.html) and [flexmix](http://cran.rstudio.com/web/packages/flexmix/index.html) provide implementations of model-based cluster analysis.

Principle components and other projection, scaling, and ordination methods

- Principal Components (PCA) is available via the `prcomp()` function (based on svd), `rda()` (in package [vegan](http://cran.rstudio.com/web/packages/vegan/index.html)), `pca()` (in package [labdsv](http://cran.rstudio.com/web/packages/labdsc/index.html)) and `dudi.pca()` (in package [ade4](http://cran.rstudio.com/web/packages/ade4/index.html)), provide more ecologically-orientated implementations. Plotting of PCA output is available in [ggbiplot](https://github.com/vqv/ggbiplot) and [ggfortify](https://github.com/sinhrks/ggfortify).
- Redundancy Analysis (RDA) is available via `rda()` in vegan and `pcaiv()` in ade4.
- Canonical Correspondence Analysis (CCA) is implemented in `cca()` in both vegan and ade4.
- Detrended Correspondence Analysis (DCA) is implemented in `decorana()` in vegan.
- Principal coordinates analysis (PCO) is implemented in `dudi.pco()` in ade4, `pco()` in labdsv, `pco()` in [ecodist](http://cran.rstudio.com/web/packages/ecodist/index.html), and `cmdscale()` in package [MASS](http://cran.rstudio.com/web/packages/MASS/index.html).
- Non-Metric multi-Dimensional Scaling (NMDS) is provided by `isoMDS()` in package MASS and `nmds()` in [ecodist](http://cran.rstudio.com/web/packages/ecodist/index.html). `nmds()`, a wrapper function for `isoMDS()`, is also provided by package [labdsv](http://cran.rstudio.com/web/packages/labdsv/index.html). vegan provides helper function `metaMDS()` for `isoMDS()`, implementing random starts of the algorithm and standardised scaling of the NMDS results. The approach adopted by vegan with `metaMDS()` is the recommended approach for ecological data.
- `corresp()` and `mca()` in MASS provide simple and multiple correspondence analysis respectively. [ca](http://cran.rstudio.com/web/packages/ca/index.html) also provides single, multiple and joint correspondence analysis. `ca()` and `mca()` in ade4 provide correspondence and multiple correspondence analysis respectively, as well as adding homogeneous table analysis with `hta()`. Further functionality is also available within vegan co-correspondence is available from cocorresp. [FactoMineR](http://cran.rstudio.com/web/packages/FactoMineR/index.html) provides `CA()` and `MCA()` which also enable simple and multiple correspondence analysis as well as associated graphical routines. [CAinterprTools](https://github.com/gianmarcoalberti/CAinterprTools) has functions for correspondence analysis and diagnostics.
- Seriation methods are available in [seriation](http://cran.rstudio.com/web/packages/seriation/index.html), which includes `bertinplot()` for producing battleship plots, and [CAseriation](https://github.com/gianmarcoalberti/CAseriation) which also has a battleship plotting function.
- [tabula](http://cran.rstudio.com/web/packages/tabula) provides methods to analyse and visualise archaeological count data (artifacts, faunal remains, etc.) using diversity measures and Ford (1962) and Bertin (1977) diagrams.
- [dimensio](http://cran.rstudio.com/web/packages/dimensio) provides a set of tools to compute, extract, summarize and visualize results of Principal Components Analysis (PCA) and Correspondence Analysis (CA) based on the Singular Value Decomposition (SVD). It also includes methods for partial bootstrap validation.

Dissimilarity coefficients

- `dist()` in standard package stats, `daisy()` in recommended package [cluster](http://cran.rstudio.com/web/packages/cluster/index.html), `vegdist()` in [vegan](http://cran.rstudio.com/web/packages/vegan/index.html), `dsvdis()` in [labdsv](http://cran.rstudio.com/web/packages/labdsv/index.html), `Dist()` in [amap](http://cran.rstudio.com/web/packages/amap/index.html), `distance()` in [ecodist](http://cran.rstudio.com/web/packages/ecodist/index.html), a suite of functions in [ade4](http://cran.rstudio.com/web/packages/ade4/index.html), and [rdist](http://cran.rstudio.com/web/packages/rdist/index.html) for very fast distance computations.
- [simba](http://cran.rstudio.com/web/packages/simba/index.html) provides functions for the calculation of similarity and multiple plot similarity measures with binary data (for instance presence/absence data)
- `distance()` in the [analogue](http://cran.rstudio.com/web/packages/analogue/index.html) package can be used to calculate dissimilarity between samples of one matrix and those of a second matrix. The same function can be used to produce pair-wise dissimilarity matrices, though the other functions listed above are faster. `distance()` can also be used to generate matrices based on Gower's coefficient for mixed data (mixtures of binary, ordinal/nominal and continuous variables). Function `daisy()` in package [cluster](http://cran.rstudio.com/web/packages/cluster/index.html) provides a faster implementation of Gower's coefficient for mixed-mode data than `distance()` if a standard dissimilarity matrix is required. Function `gowdis()` in package [FD](http://cran.rstudio.com/web/packages/FD/index.html) also computes Gower's coefficient and implements extensions to ordinal variables.
- [DistatisR](http://cran.rstudio.com/web/packages/DistatisR/index.html) provides functions for three-way multidimensional scaling for the analysis of multiple distance/covariance matrices collected on the same set of observations.
- Simple and partial Mantel tests to compute the Mantel statistic as a matrix correlation between two dissimilarity matrices are available in [vegan](http://cran.rstudio.com/web/packages/vegan/index.html) and [ecodist](http://cran.rstudio.com/web/packages/ecodist/index.html)

## Making maps and using R as a Geographical Information System

- Making maps: [ggspatial](http://cran.rstudio.com/web/packages/ggspatial/index.html) for easy plotting of most kinds of spatial data, see also: [maps](http://cran.rstudio.com/web/packages/maps/index.html), [rworldmap](http://cran.rstudio.com/web/packages/rworldmap/index.html), [mapdata](http://cran.rstudio.com/web/packages/mapdata/index.html), [maptools](http://cran.rstudio.com/web/packages/maptools/index.html), [mapproj](http://cran.rstudio.com/web/packages/mapproj/index.html),[mapsf](http://cran.r-project.org/web/packages/mapsf/index.html), [ggplot2](http://cran.rstudio.com/web/packages/ggplot2/index.html), [ggmap](http://cran.rstudio.com/web/packages/ggmap/index.html), [RgoogleMaps](http://cran.rstudio.com/web/packages/RgoogleMaps/index.html), [cartography](http://cran.rstudio.com/web/packages/cartography/index.html) [RColorBrewer](http://cran.rstudio.com/web/packages/RColorBrewer/index.html)
- Scale bars and North arrows can be added to maps made with ggplot and ggmap using [GISTools](https://cran.r-project.org/web/packages/GISTools), [ggsn](https://github.com/oswaldosantos/ggsn) or [legendMap](https://github.com/3wen/legendMap).
- Interactive mapping of spatial objects with zooming and panning is possible with [leaflet](https://cran.rstudio.com/web/packages/leaflet/index.html) and geo[mapview](http://cran.rstudio.com/web/packages/mapview/index.html)
- To interactively create and edit spatial objects (points, lines, polygons), use [mapedit](https://cran.r-project.org/package=mapedit), and to smooth drawn polygons, use [smoothr](https://cran.r-project.org/package=smoothr)
- R has many packages that enable it to be used as a GIS for spatial analysis: [sf](http://cran.rstudio.com/web/packages/sf/index.html), [sp](http://cran.rstudio.com/web/packages/sp/index.html), [terra](http://cran.r-project.org/web/packages/terra/index.html), [rasterVis](http://cran.rstudio.com/web/packages/rasterVis/index.html), [shapefiles](http://cran.rstudio.com/web/packages/shapefiles/index.html), [spatial](http://cran.rstudio.com/web/packages/spatial/index.html), [spatstat](http://cran.rstudio.com/web/packages/spatstat/index.html), [splancs](http://cran.rstudio.com/web/packages/splancs/index.html), [ipdw](http://cran.rstudio.com/web/packages/ipdw/index.html), [geoR](http://cran.rstudio.com/web/packages/geoR/index.html), [argosfilter](http://cran.rstudio.com/web/packages/argosfilter/index.html), [ads](http://cran.rstudio.com/web/packages/ads/index.html), [spdep](http://cran.rstudio.com/web/packages/spdep/index.html), [gstat](http://cran.rstudio.com/web/packages/gstat/index.html), [GISTools](http://cran.rstudio.com/web/packages/GISTools/index.html)
- [spgrass6](http://cran.rstudio.com/web/packages/spgrass6/index.html) and [rgrass7](http://cran.rstudio.com/web/packages/rgrass7/index.html) provides facilities for using all [GRASS](http://grass.osgeo.org/) geographical information system commands from the R command line.
- [qgisprocess](https://github.com/r-spatial/qgisprocess) establishes an interface between R and [QGIS](https://qgis.org/en/site/), i.e. it allows the user to access QGIS geoprocessing algorithms from within R (by wrapping the [qgis-process](https://docs.qgis.org/latest/en/docs/user_manual/processing/standalone.html) command line utility).
- [spdply](https://cran.r-project.org/web/packages/spdplyr) provides methods for dplyr verbs for 'sp' and 'Spatial' class objects.
- [rgdal](http://cran.rstudio.com/web/packages/rgdal/index.html) uses the GDAL (Geospatial Data Abstraction Library) (raster) and OGR (vector) data I/O library, as well as PROJ.4 for CRS (coordinate reference systems) (re)projections
- [rgeos](http://cran.rstudio.com/web/packages/rgeos/index.html) uses the GEOS (Geometry Open Source) library, which powers PostGIS: does the 'usual' geometry operations for features
- The [Spatial](http://cran.r-project.org/web/views/Spatial.html) and [Spatio Temporal](http://cran.r-project.org/web/views/SpatioTemporal.html) task views have more details.
- [recexcavAAR](https://cran.r-project.org/web/packages/recexcavAAR/index.html) 3D Reconstruction of Archaeological Excavations
- [SiteExploitationTerritories](https://github.com/eScienceCenter/SiteExploitationTerritories) implements the Tobler Hiking Function for spatial time-cost analysis of rasters
- [klrfome](https://github.com/mrecos/klrfome) provides functions to model a single scalar outcome (e.g. presence/absence of an archaeological site) to a distribution of features (such as landscape and environmental variables).

## Environmental & geological analysis

- Transfer function models including weighted averaging (WA), modern analogue technique (MAT), Locally-weighted WA, & maximum likelihood (aka Gaussian logistic) regression (GLR) are provided by [analogue](http://cran.rstudio.com/web/packages/analogue/index.html), [vegan](http://cran.rstudio.com/web/packages/vegan/index.html), and [rioja](http://cran.rstudio.com/web/packages/rioja/index.html) for stratigraphic analyses
- [G2Sd](http://cran.rstudio.com/web/packages/G2Sd/index.html) gives full descriptive statistics and a physical description of sediments based on grain-size distributions, [soiltexture](http://cran.rstudio.com/web/packages/soiltexture/index.html) and [ggtern](http://cran.rstudio.com/web/packages/ggtern/index.html) for ternary plots of soil texture
- Constrained clustering of stratigraphic data is provided by function `chclust()` in the form of constrained hierarchical clustering in [rioja](http://cran.rstudio.com/web/packages/rioja/index.html).
- Stratigraphic columns can be plotted and analysed with the the [SDAR](http://run.unl.pt/bitstream/10362/14554/1/TGEO0128.pdf) package.
- Benn diagrams can be drawn with [plotrix](http://cran.rstudio.com/web/packages/plotrix/index.html) and Woodcock diagrams with [RFOC](http://cran.rstudio.com/web/packages/RFOC/index.html).
- Function for circular statistics such as the Rayleigh test and many others, can be found in [CircStats](https://cran.r-project.org/web/packages/CircStats/index.html), [RFOC](https://cran.rstudio.com/web/packages/RFOC/index.html), [circular](https://cran.rstudio.com/web/packages/circular/index.html), [Directional](https://cran.r-project.org/web/packages/Directional/), and [heR.Misc](http://exposurescience.org/hosted-projects/inhalation-exposure-simulation-modeling-project/the-her-software-project)
- The [siar](http://cran.rstudio.com/web/packages/siar/index.html) package takes data on organism isotopes and fits a Bayesian model to their dietary habits based upon a Gaussian likelihood with a mixture dirichlet-distributed prior on the mean
- The [zooaRch](http://cran.r-project.org/web/packages/zooaRch/) package has functions for survival analysis of zooarchaeological datasets
- Functions for tree ring analysis can be found in [dplR](http://cran.rstudio.com/web/packages/dplR/index.html)
- [Orientations](https://github.com/surf3s/Orientations)for doing fabric analysis. Initially intended for use with total station coordinate data (two XYZ points on the long axis of an object) but bearing and plunge data can be transformed into the appropriate format for use here (see McPherron 2018).
- See the [Environmetrics](http://cran.r-project.org/web/views/Environmetrics.html) task view for more.

## Dating

- Radiocarbon dates can be calibrated using [Bchron](http://cran.rstudio.com/web/packages/Bchron/index.html) with various calibration curves (including user generated ones); also does Age-depth modelling, relative sea level rate estimation incorporating time uncertainty in polynomial regression models; and non-parametric phase modelling via Gaussian mixtures as a means to determine the activity of a site (and as an alternative to the Oxcal function SUM).
- [rcarbon](https://github.com/ahb108/rcarbon) for basic calibration, modelling, hypothesis testing
- Bayesian age-depth modelling of radiocarbon dates is also available in [Bacon](http://chrono.qub.ac.uk/blaauw/bacon.html), and [clam](http://chrono.qub.ac.uk/blaauw/) contains functions for "classical", non-Bayesian age-depth modelling. These are not R packages, but [clam](https://github.com/SimonGoring/clam) has been packaged for easy use.
- [c14bazAAR](https://cran.r-project.org/web/packages/c14bazAAR/index.html) for the retrieval and preparation of large radiocarbon datasets.
- The [oxcAAR](https://github.com/ISAAKiel/oxcAAR) package allows you to use R to connect to a local installation of the OxCal software to calibrate radiocarbon dates and a variety of other OxCal operations.
- [ArchaeoPhases](https://cran.r-project.org/package=ArchaeoPhases) provides statistical tools to analyze and to estimate archaeological phases from the posterior distribution (i.e. MCMC samples) of a sequence of dates. Includes testing procedures to check the presence of a gap between two successive phases or periods. [chronos](https://cran.r-project.org/package=chronos) is a fork of ArchaeoPhases v1.5 (Philippe and Vibet 2020) rewritten in S4 and using ggplot2
- Various R functions for Luminescence Dating data analysis are in the [Luminescence](http://cran.rstudio.com/web/packages/Luminescence/index.html) package (including radial plotting) and in the [numOSL](https://cran.r-project.org/web/packages/numOSL/index.html) package, including equivalent dose calculation, annual dose rate determination, growth curve fitting, decay curve decomposition, statistical age model optimization, and statistical plot visualization.
- The [archSeries](https://github.com/davidcorton/archSeries) makes chronologies from information from multiple entities with varying chronological resolution and overlapping date ranges
- The [ADMUR](https://github.com/UCL/ADMUR) package provides tools to directly model underlying population dynamics using chronological datasets (radiocarbon and other) with a variety of models, including Continuous Piecewise Linear (CPL) model framework, and model comparison framework using BIC.
- For time series analysis using calendar dates, [zoo](https://cran.r-project.org/package=zoo) and [padr](https://cran.r-project.org/package=padr) are useful.
- [SPARTAAS](https://CRAN.R-project.org/package=SPARTAAS) Statistical pattern recognition and dating using archaeological artefacts assemblages.
- [kairos](http://cran.rstudio.com/web/packages/kairos) provides methods for analysis of chronological patterns from archaeological count data, including Mean Ceramic Date (MCD)
- [nimbleCarbon](https://cran.r-project.org/package=nimbleCarbon) add on library for the [nimble](https://cran.r-project.org/package=nimble) package for Bayesian Analyses of radiocarbon dates, including phase models and custom population growth growth models.

## Tree-ring analysis / Dendrochronology

- Dendrochronology Program Library in R [dplR] (https://cran.r-project.org/web/packages/dplR/index.html) is a library that includes many tools and functions to analyze and edit tree ring series.
- [measuRing] (https://cran.r-project.org/web/packages/measuRing/index.html) provides tools to measure tree rings on scanned images of wood samples
- [RingdateR](https://ringdater.github.io/ringdater/index.html) is a graphical and statistical tool for crossdating annually resolved time series such as tree rings or mollusc, coral and otolith growth increments

## Evolution, phylogenetics, morphometrics, and shape analysis

- The [Phylogenetics task view](http://cran.r-project.org/web/views/Phylogenetics.html) provides more detailed coverage of the subject area and related functions within R.
- Packages specifically tailored for the analysis of phylogenetic and evolutionary data include: [ape](http://cran.rstudio.com/web/packages/ape/index.html), [phytools](http://cran.rstudio.com/web/packages/phytools/index.html), [phangorn](http://cran.rstudio.com/web/packages/phangorn/index.html), [Rphylip](http://cran.rstudio.com/web/packages/Rphylip/index.html) (requires PHYLIP), [ouch](http://cran.rstudio.com/web/packages/ouch/index.html), and [pegas](http://cran.rstudio.com/web/packages/pegas/index.html).
- For plotting trees most of these packages include their own modifications of the base `plot()` function, and there are also [ggtree](http://cran.rstudio.com/web/packages/ggtree/index.html), [ggdendro](http://cran.rstudio.com/web/packages/ggdendro/index.html), [dendextend](http://cran.rstudio.com/web/packages/dendextend/index.html), and [ggphylo](http://cran.rstudio.com/web/packages/ggphylo/index.html)
- Morphometric and shape analysis methods are provided by [shapes](http://cran.rstudio.com/web/packages/shapes/index.html), [geomorph](http://cran.rstudio.com/web/packages/geomorph/index.html), [paleomorph](https://cran.r-project.org/web/packages/paleomorph) and [Momocs](http://cran.rstudio.com/web/packages/Momocs/index.html). Related packages include [shapeR](https://github.com/lisalibungan/shapeR) [Anthropometry](http://cran.rstudio.com/web/packages/Anthropometry/index.html) and [Morpho](http://cran.rstudio.com/web/packages/Morpho/index.html).
- [StereoMorph](http://cran.rstudio.com/web/packages/StereoMorph/index.html) allows users to collect 3D landmarks and curves from objects using two standard digital cameras.
- [cTransmission](https://github.com/ercrema/cTransmission) provides an Approximate Bayesian Computation Framework for inferring patterns of cultural transmission from frequency data

## Image analysis

- [pixmap](http://cran.rstudio.com/web/packages/pixmap/index.html) provides methods for creating, plotting and converting bitmapped images in three different formats: RGB, grey and indexed pixmaps. Similarly, [jpeg](http://cran.rstudio.com/web/packages/jpeg/index.html) provides an easy and simple way to read, write and display bitmap images stored in the JPEG format.
- [EBImage](http://www.bioconductor.org/packages/release/bioc/html/EBImage.html) (requires ImageMagick) provides general purpose functionality for the reading, writing, processing and analysis of images (and is very well documented). Various functions for image processing and analysis can also be found in [ripa](http://cran.rstudio.com/web/packages/ripa/index.html) and [imager](https://github.com/dahtah/imager)
- [magick](https://github.com/jeroenooms/magick) provides bindings to the [ImageMagick image-processing library](http://www.imagemagick.org/), the most comprehensive open-source image processing package available.
- [iconr](https://cran.r-project.org/web/packages/iconr) analysis of Prehistoric Iconography, considers any iconographic composition (‘decoration’) as a geometric graph of graphical units (GUs)
- [outlineR](https://github.com/yesdavid/outlineR) An R package to derive outline shapes from (multiple) artefacts on JPEG images

## Simulations

- [NetLogoR](https://cran.r-project.org/package=NetLogoR) provides fucntions to easily create agent-based models in R following the NetLogo framework
- [RNetLogo](http://cran.rstudio.com/web/packages/RNetLogo/index.html) links R and NetLogo
- [simecol](http://cran.rstudio.com/web/packages/simecol/index.html) for simulating ecological (and other) dynamic systems. It can be used for differential equations, individual-based (or agent-based) and other models as well.
- One-dimensional cellular automata are also possible to model with the package [CellularAutomaton](http://cran.rstudio.com/web/packages/CellularAutomaton/index.html).
- [archeofrag](https://cran.r-project.org/package=archeofrag) for simulating site formation processes, with a particular focus on refitting and spatial analysis.

## Network analysis

- The two major packages are [igraph](http://cran.rstudio.com/web/packages/igraph/index.html), which is a generic network analysis and visualisation package, and [sna](http://cran.rstudio.com/web/packages/sna/index.html), which performs social analysis of networks.
- Other packages include [statnet](http://cran.rstudio.com/web/packages/statnet/index.html), [intergraph](http://cran.rstudio.com/web/packages/intergraph/index.html), [network](http://cran.rstudio.com/web/packages/network/index.html) (manipulates and displays network objects), [ergm](http://cran.rstudio.com/web/packages/ergm/index.html) (a set of tools to analyze and simulate networks based on exponential random graph models exponential random graph models), [hergm](http://cran.rstudio.com/web/packages/hergm/index.html) (implements hierarchical exponential random graph models), and [RSiena](http://cran.rstudio.com/web/packages/RSiena/index.html) (allows the analyses of the evolution of social networks using dynamic actor-oriented models)

## Mortality Analysis

- [mortAAR](https://cran.r-project.org/web/packages/mortAAR/index.html) Analysis of Archaeological Mortality Data

## Skyscape Archaeology
- [skyscapeR](https://github.com/f-silva-archaeo/skyscapeR) Data reduction, visualization and analysis in skyscape archaeology, archaeoastronomy and cultural astronomy

## Reproducible research

- [knitr](http://cran.rstudio.com/web/packages/knitr/index.html) enables R code and text with formatting instructions (eg. markdown or LaTeX) to be combined in a single document and executed to produce a document that contains rendered plots, analysed data and formatted text.
- The [targets](http://cran.rstudio.com/web/packages/targets) package has functions that enable declarative workflows so that each time an analysis is run, it updates only the parts of the workflow that have changed.
- [renv](http://cran.rstudio.com/web/packages/renv) supports the development of isolated, stand-alone R projects that include all the packages used and their dependencies.
- [rocker](https://github.com/rocker-org/rocker) is a project that provides Docker containers to run R in a lightweight virtual environment, the hadleyverse container includes dplyr, ggplot2, etc., as well as RStudio server and LaTeX.

### Writing Reproducible manuscripts

- [rrtools](https://github.com/benmarwick/rrtools), is a package that provides instructions, templates, and functions for making a basic compendium suitable for writing reproducible research reports and articles with R.
- The [rticles](https://github.com/rstudio/rticles) package includes templates for converting markdown documents into PDF files formatted ready for submission for publication, such as in the PLOS journals, the Frontiers In journals, and Elsevier journals. Similarly, the [papaja](https://github.com/crsh/papaja) packge contains a template for converting a markdown file into an APA-formatted PDF. These packages depend on [pandoc](http://johnmacfarlane.net/pandoc/), a universal document format converter (not an R package). In this context it is used to convert rmarkdown or LaTeX to PDF, MS Word or HTML files. It is included with RStudio but can also be used stand-alone from the command line.
- For making nice tables in documents: [kableExtra](https://cran.r-project.org/web/packages/kableExtra), [gt](https://cran.r-project.org/web/packages/gt), [flextable](https://cran.r-project.org/web/packages/flextable)
- The [quarto](http://cran.rstudio.com/web/packages/quarto) package implements markdown document formatting language for scientific and technical publishing. Quarto documents are authored using markdown with R code blocks and inline code. It has all the usual scholarly accessories: citations, figures, tables, captions and cross-referencing.
- [RStudio](http://www.rstudio.com/) is an integrated development environment that simplfies developing R code with numerous built-in conveniences, including vim
board shortcuts. There are also packages that make scholarly writing in RStudio easy: [wordcountaddin](https://github.com/benmarwick/wordcountaddin)

## Developing R code and packages

- [devtools](http://cran.rstudio.com/web/packages/devtools/index.html) (requires Rtools for Windows or Xcode for OSX) for easily creating R packages. [usethis](https://CRAN.R-project.org/package=usethis) automates many tasks surrouding package-making.
- [Goodpractice](https://github.com/MangoTheCat/goodpractice) gives advice about good practices when building R packages. Advice includes functions and syntax to avoid, package structure, code complexity, code formatting, etc.
- [roxygen2](http://cran.rstudio.com/web/packages/roxygen2/index.html) for simplifying the creation of documentation for packages,
- [testthat](http://cran.rstudio.com/web/packages/testthat/index.html) for developing tests of functions in packages
- [Style guide for writing R code](http://adv-r.had.co.nz/Style.html) by Hadley Wickham. The [lintr](http://cran.r-project.org/web/packages/lintr/) package analyses code to check that it conforms to Hadley Wickham's style guide (this package is built into RStudio)
- Idioms of R are discussed in the [vignette](http://cran.r-project.org/web/packages/rockchalk/vignettes/Rchaeology.pdf) of the [rockchalk](http://cran.rstudio.com/web/packages/rockchalk/index.html) package, and Pat Burn's essay [the R Inferno](http://www.burns-stat.com/documents/books/the-r-inferno/).

## Datasets

- [archdata](http://cran.rstudio.com/web/packages/archdata/index.html) contains eleven archaeological datasets from around the world reported in published studies. These represent typical forms of archaeological data (and so are useful for teaching)
- [binford](https://github.com/benmarwick/binford) contains more than 200 variables coding aspects of hunter-gatherer subsistence, mobility, and social organization for 339 ethnographically documented groups of hunter-gatherers, as used in Binford (2001) _Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets_
- [bioanth](https://github.com/geanes/bioanth) contains three osteometric datasets useful for biological and forensic anthropology.
- [BSDA](http://cran.rstudio.com/web/packages/BSDA/index.html) contains a dataset of 60 radiocarbon ages of observations taken from an archaeological site with four phases of occupation.
- [cawd](https://github.com/sfsheath/cawd) contains 15 datasets of ancient Greek, Roman and Persian maps and digital atlas data
- [chemometrics](http://cran.rstudio.com/web/packages/chemometrics/index.html) contains a dataset of elemental concentrations for 180 archaeological glass vessels excavated from 15th - 17th century contexts in Antwerp.
- [folio](https://cloud.r-project.org/web/packages/folio/index.html) provides several types of data related to broad topics in archaeology (cultural evolution, radiocarbon dating, paleoenvironments, etc.), which can be used to illustrate statistical methods in the classroom (multivariate data analysis, compositional data analysis, diversity measurement, etc.).
- [neotoma](https://github.com/ropensci/neotoma) is a package that facilitates access to the Neotoma Paleoecology Dataset which contains pollen and fossil data
- [zooaRch](http://cran.r-project.org/web/packages/zooaRch/) contains two zooarchaeological datasets.
- [gsloid](https://CRAN.R-project.org/package=gsloid) Contains published data sets for global benthic d18O data for 0-5.3 Myr and global sea levels based on marine sediment core data for 0-800 ka
- [evoarchdata](https://github.com/benmarwick/evoarchdata) contains four published datasets widely used in archaeological studies of cultural evolution

## Places to go for help

- `?` function, eg. `?mean` to get built-in help on the mean function
- `sos::findFn("rose diagram")` searches all installed packages for the search term, using the [sos](http://cran.rstudio.com/web/packages/sos/index.html) package
- Most major packages come with vignettes that narrate typical uses of the package's core functions. Vignettes can be accessed with the command `vignette(packagename)`.
- Google searches in the form: [r help [search terms]](https://www.google.com/?gws_rd=ssl#q=r+help+)
- A custom search engine of R resources: http://www.rseek.org/
- [Graphical output from the examples in the documentation for all CRAN packages](http://rgm3.lab.nig.ac.jp/RGM)
- All R package documentation (including CRAN, GitHub and Bioconductor packages) is online in an easy-to-ready format at http://www.rdocumentation.org/
- Cheatsheets to print for handy reference: [short one on base](http://cran.r-project.org/doc/contrib/Short-refcard.pdf), [longer one on base](http://cran.r-project.org/doc/contrib/Baggott-refcard-v2.pdf), [ggplot2, dplyr, tidyr, rmarkdown, making packages](http://www.rstudio.com/resources/cheatsheets/), [data.table](https://s3.amazonaws.com/assets.datacamp.com/img/blog/data+table+cheat+sheet.pdf), [using colours](https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf), [colours](http://research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf), [numerous others](http://devcheatsheet.com/tag/r/)
- [stackoverflow](http://stackoverflow.com/questions/tagged/r) is an online Q&A point-scoring website where questions and answers can be voted on to indicate their quality. Many highly skilled R programmers are active participants. [Cross Validated](http://stats.stackexchange.com/) is a similar Q&A site for questions about statistics
- You could send a message to the official [r-help email list](https://stat.ethz.ch/mailman/listinfo/r-help), but do be sure to read, follow and cite the [posting guide](http://www.r-project.org/posting-guide.html). The list is also [searchable](https://www.google.com/?gws_rd=ssl#q=site:stat.ethz.ch+pipermail+archaeology).

## Related links:

- CRAN Task View: [SocialSciences](http://cran.rstudio.com/web/views/SocialSciences.html)
- CRAN Task View: [Spatial](http://cran.rstudio.com/web/views/Spatial.html)
- CRAN Task View: [Spatio-temporal](http://cran.r-project.org/web/views/SpatioTemporal.html)
- CRAN Task View: [Cluster analysis](http://cran.r-project.org/web/views/Cluster.html)
- CRAN Task View: [Multivariate Statistics](http://cran.nexr.com/web/views/Multivariate.html)
- CRAN Task View: [Bayesian inference](http://cran.r-project.org/web/views/Bayesian.html)
- CRAN Task View: [Phylogenetics](http://cran.r-project.org/web/views/Phylogenetics.html)
- CRAN Task View: [Robust](http://cran.r-project.org/web/views/Robust.html)
- CRAN Task View: [Visualization](http://cran.nexr.com/web/views/Graphics.html)
- CRAN Task View: [Reproducible research](http://cran.r-project.org/web/views/ReproducibleResearch.html)
- [David L. Carlson's guides on using R for 'Quantifying Archaeology' by Stephen Shennan 'Statistics for Archaeologists' by Robert Drennan]( http://people.tamu.edu/~dcarlson/quant/index.html)
- [Matt Peeples' scripts for archaeological statistics]( http://www.mattpeeples.net/resources.html)
- [Gianmarco Alberti's pages on Correspondence Analysis in Archaeology](http://cainarchaeology.weebly.com/)
- [Quantitative Archaeology Wiki](http://wiki.iosa.it/doku.php), including [some code for battleship plots](http://wiki.iosa.it/dokuwiki/doku.php?id=contingency_tables)
- [Michael Baxter's 'Notes on Quantitative Archaeology using R'](http://www.mikemetrics.com/r-chaeology/4568129078)
- [GitHub repository for this Task View](https://github.com/benmarwick/ctv-archaeology)

## Publications that include R code

Allison, James R. (2019). Ceramic Production and Exchange among the Virgin Anasazi, 30 Years Later, _KIVA_, 85:4, 289-312,

d'Alpoim Guedes J, Jin G, Bocinsky RK (2015). The Impact of Climate on the Spread of Rice to North-Eastern China: A New Look at the Data from Shandong Province. PLOS ONE 10(6): e0130430. doi:

d’Alpoim Guedes, Jade and R. Kyle Bocinsky. (2018). Climate change stimulated agricultural innovation and exchange across Asia, 2018. _Science Advances_ 4:eaar4491.

d’Alpoim Guedes, J., Hanson, S., Higham, C., Higham, T., & Lertcharnrit, T. (2019). The wet and the dry, the wild and the cultivated: Subsistence and risk management in ancient Central Thailand. Archaeological and Anthropological Sciences, 11(12), 6473–6484. https://doi.org/10.1007/s12520-019-00794-8

Angourakis, Andreas, Verònica Martínez Ferreras, Alexis Torrano, and Josep M. Gurt Esparraguera. (2018). “Presenting Multivariate Statistical Protocols in R Using Roman Wine Amphorae Productions in Catalonia, Spain.” _Journal of Archaeological Science_ 93 (May): 150–65. https://doi.org/10.1016/j.jas.2018.03.007. Describes the cerUB pkg

Arranz-Otaegui, A., Roe, J. (2023). Revisiting the concept of the ‘Neolithic Founder Crops’ in southwest Asia. Veget Hist Archaeobot (2023). https://doi.org/10.1007/s00334-023-00917-1

Arroyo-Kalin, Manuel and Riris Philip (2021). Did pre-Columbian populations of the Amazonian biome reach carrying capacity during the Late Holocene? _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190715

Barr, W. A., Pobiner, B., Rowan, J., Du, A., & Faith, J. T. (2022). No sustained increase in zooarchaeological evidence for carnivory after the appearance of Homo erectus. _Proceedings of the National Academy of Sciences_, 119(5). https://doi.org/10.1073/pnas.2115540119

Bartholdy, B. P., & Henry, A. G. (2022). Investigating Biases Associated With Dietary Starch Incorporation and Retention With an Oral Biofilm Model. _Frontiers in Earth Science_.

Barton, C. M., Tortosa, J. E. A., Garcia-Puchol, O., Riel-Salvatore, J. G., Gauthier, N., Conesa, M. V., & Bouchard, G. P. (2017). Risk and resilience in the late glacial: A case study from the western Mediterranean. _Quaternary Science Reviews_.

Batist, Z. & Roe, J. (2024). Open archaeology, open source? Collaborative practices in an emerging community of archaeological software engineers. _Internet Archaeology_ 67.

Bebber, M. R., Kim, N. C., Tripoli, S., Quick, R., Buchanan, B., Walker, R. S., Paige, J., Baldino, J., McKinny, S., Taylor, J., & Eren, M. I. (2024). The gravity of Paleolithic hunting. _Journal of Archaeological Science: Reports_, 59, 104785. https://doi.org/10.1016/j.jasrep.2024.104785

Bebber, M.R., Buchanan, B., Eren, M.I. et al. (2023). Atlatl use equalizes female and male projectile weapon velocity. _Scientific Reports_ 13, 13349 https://doi.org/10.1038/s41598-023-40451-8

Beck, J., Gjesfjeld, E., & Chrisomalis, S. (2021). Prestige or Perish: Publishing Decisions in Academic Archaeology. _American Antiquity_, 86(4), 669-695. doi:10.1017/aaq.2021.64

Beck, J., & Smith, B. H. (2019). Don't throw the baby teeth out with the bathwater: Estimating subadult age using tooth wear in commingled archaeological assemblages. _International Journal of Osteoarchaeology_, 29(5), 831-842.

Beheim, Bret A., and Adrian V. Bell. (2011). Inheritance, Ecology and the Evolution of the Canoes of East Oceania. _Proceedings of the Royal Society B: Biological Sciences_, February.

Belmiro J., Terradas X., Cascalheira J. (2023). Creating frames of reference for chert exploitation during the Late Pleistocene in Southwesternmost Iberia. _PLOS ONE_ 18(10): e0293223. https://doi.org/10.1371/journal.pone.0293223

Belmiro, J., Bicho, N., Haws, J., & Cascalheira, J. (2020). The Gravettian-Solutrean transition in westernmost Iberia: New data from the sites of Vale Boi and Lapa do Picareiro. _Quaternary International_

Benjamin J, O’Leary M, McDonald J, Wiseman C, McCarthy J, Beckett E, et al. (2020). Aboriginal artefacts on the continental shelf reveal ancient drowned cultural landscapes in northwest Australia. PLoS ONE 15(7): e0233912.

Bergin, S., & Snitker, G. (2023). ArchaeoSRP: An R Package for Extracting and Synthesizing Federal Cultural Resources Data for Research and Management. _Advances in Archaeological Practice_, 1–11. https://doi.org/10.1017/aap.2023.22

Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S., & Stevens, C. (2017). Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proceedings of the National Academy of Sciences of the United States of America, 114(49), E10524–E10531. https://doi.org/10.1073/pnas.1709190114

Bevan A. and Crema E. R. (2021). Modifiable reporting unit problems and time series of long-term human activity. _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190726

Biagetti S, Alcaina-Mateos J, Ruiz-Giralt A, Lancelotti C, Groenewald P, Ibañez-Insa J, et al. (2021). Identifying anthropogenic features at Seoke (Botswana) using pXRF: Expanding the record of southern African Stone Walled Sites. _PLoS ONE_ 16(5): e0250776. https://doi.org/10.1371/journal.pone.0250776

Biagetti, S., Alcaina-Mateos, J., Crema, E.R., (2016). A matter of ephemerality: the study of Kel Tadrart Tuareg (southwest Libya) campsites via quantitative spatial analysis. Ecology and Society 21. https://doi.org/10.5751/ES-08202-210142 [GitHub repo](https://github.com/ercrema/a_matter_of_ephemerality).

Bicho, N. and Esteves, E. (2022). Pleistocene hunter-gatherer coastal adaptations in Atlantic Iberia. _Frontiers in Earth Sciences_ 10:957214. https://doi.org/10.3389/feart.2022.957214

Bicho, N. and Cascalheira, J. (2018). The use of lithic assemblages for the definition of short-term occupations in hunter-gatherer prehistory. In Picin, A. and Cascalheira, J. (eds.) _Short-term occupations in Paleolithic Archaeology._ Interdisciplinary Contributions to Archaeology. Springer.

Bird, Darcy et al. (2022). P3k14c, a Synthetic Global Database of Archaeological Radiocarbon Dates. _Scientific Data_ 9(1): 27.

Bird, MI, SA Condie, S O’Connor, D O’Grady, C Reepmeyer, S Ulm, M Zega, F Saltré, CJA Bradshaw. (2019). Early human settlement of Sahul was not an accident. Scientific Reports doi:10.1038/s41598-019-42946-9 https://github.com/cjabradshaw/SahulHuman

Birch, T. and M. Martinón-Torres (2019). Shape as a measure of weapon standardisation: From metric to geometric morphometric analysis of the Iron Age ‘Havor’ lance from Southern Scandinavia. _Journal of Archaeological Science_ 101: 34-51

Blinkhorn James, Timbrell Lucy, Grove Matt and Scerri Eleanor M. L. (2022). Evaluating refugia in recent human evolution in Africa _Phil. Trans. R. Soc._ B3772020048520200485

Blinkhorn, J., Groucutt, H.S., Scerri, E.M.L. et al. (2021). Directional changes in Levallois core technologies between Eastern Africa, Arabia, and the Levant during MIS 5. _Scientific Reports_ 11, 11465 https://doi.org/10.1038/s41598-021-90744-z

Borck, L., Athenstädt, J.C., Cheromiah, L.A., Aragon, L.D., Brandes, U. and Hofman, C.L., (2020). Plainware and Polychrome: Quantifying Perceptual Differences in Ceramic Classification Between Diverse Groups to Further a Strong Objectivity. Journal of Computer Applications in Archaeology, 3(1), pp.135–150. DOI:

Bourgon, N., K. Jaouen, A-M. Bacon, et al. (2021). Trophic Ecology of a Late Pleistocene Early Modern Human from Tropical Southeast Asia Inferred from Zinc Isotopes. _Journal of Human Evolution_ 161: 103075.

Bradshaw, C. J. A., Norman, K., Ulm, S., Williams, A. N., Clarkson, C., Chadœuf, J., Lin, S. C., Jacobs, Z., Roberts, R. G., Bird, M. I., Weyrich, L. S., Haberle, S. G., O’Connor, S., Llamas, B., Cohen, T. J., Friedrich, T., Veth, P., Leavesley, M., & Saltré, F. (2021). Stochastic models support rapid peopling of Late Pleistocene Sahul. Nature Communications, 12(1), 2440. https://doi.org/10.1038/s41467-021-21551-3

Bradshaw, CJA, S Ulm, AN Williams, MI Bird, RG Roberts, Z Jacobs, F Laviano, LS Weyrich, T Friedrich, K Norman, F Saltré. (2019). Minimum founding populations for the first peopling of Sahul. Nature Ecology and Evolution doi:10.1038/s41559-019-0902-6 https://github.com/cjabradshaw/SahulHuman

Breslawski RP, Etter BL, Jorgeson I, Boulanger MT (2018). The Atlatl to Bow Transition: What Can We Learn from Modern Recreational Competitions? _Lithic Technology_

Breslawski RP, Playford T (2017). Probabilistic Models of Seasonal Bison Exploitation Based on Fetal Prey Osteometry and Reproductive Phenology. _Archaeological and Anthropological Sciences_

Brown, A., & Crema, E. (2019). Maori Population Growth in Pre-contact New Zealand: regional population dynamics inferred from summed probability distributions of radiocarbon dates. _The Journal of Island and Coastal Archaeology_

Brownlee E. A Radiocarbon-Based Model of Changing Burial Rites in Early Medieval England._Radiocarbon_. 2023:1-21. https://doi.org/10.1017/RDC.2023.110

Brownlee, E. (2021). Grave Goods in Early Medieval Europe: regional variability and decline, _Internet Archaeology_ 56. https://doi.org/10.11141/ia.56.11

Broughton, J. M., & Weitzel, E. M. (2018). Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature communications, 9(1), 5441. https://doi.org/10.1038/s41467-018-07897-1

Brunner M, von Felten J, Hinz M, Hafner A (2020). Central European Early Bronze Age chronology revisited: A Bayesian examination of large-scale radiocarbon dating. PLOS ONE 15(12): e0243719. https://doi.org/10.1371/journal.pone.0243719

Bustos-Pérez, G., & Ollé, A. (2023). The quantification of surface abrasion on flint stone tools. _Archaeometry_ https://doi.org/10.1111/arcm.12913

Bustos-Pérez, G., Baena, J., & Vaquero, M. (2023). What lies in between: Levallois, discoid and intermediate methods. _Journal of Lithic Studies_, 10(2), https://doi.org/10.2218/jls.7132

Bustos-Pérez, G., & Baena Preysler, J. (2022). Multiple approaches to predicting flake mass. _Journal of Archaeological Science: Reports_, 46, 103698. https://doi.org/10.1016/j.jasrep.2022.103698

Bustos-Pérez, G., Baena, J., (2021). Predicting Flake Mass: A View from Machine Learning. _Lithic Technology_ 14. https://doi.org/10.1080/01977261.2021.1881267

Calandra, I., Schunk, L., Bob, K., Gneisinger, W., Pedergnana, A., Paixao, E., ... & Marreiros, J. (2019). The effect of numerical aperture on quantitative use-wear studies and its implication on reproducibility. _Scientific reports_, 9(1), 1-10.

Calandra I., Schunk, L., Rodriguez, A., Gneisinger, W., Pedergnana, A., Paixao, E., Marreiros, J. (2019). Back to the edge: relative coordinate system for use-wear analysis. _Archaeological and Anthropological Sciences_.

Cardillo, M., & Charlin, J. (2018). Phylogenetic analysis of stemmed points from Patagonia: Shape change and morphospace evolution. _Journal of Lithic Studies_, 5(2). data & code: https://zenodo.org/record/4670467

Cardillo, Marcelo, Scartascini Federico Luis and Zangrando Atilio Francisco (2015). Combining morphological and metric variations in the study of design and functionality in stone weights. A comparative approach from continental and insular Patagonia, Argentina. _Journal of Archaeological Science: Reports_ 4:578-587.

Carleton, W. C. (2020). Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes. _Journal of Quaternary Science_ https://doi.org/10.1002/jqs.3256

Carleton W. C., Groucutt HS. (2020). Sum things are not what they seem: Problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. _The Holocene_ https://doi.org/10.1177/0959683620981700

Carleton, W. C. , J. Conolly, and G. Iannone (2012). A locally-adaptive model of archaeological potential (LAMAP) _Journal of Archaeological Science_ 39(11), 3371-3385, 2012 ,

Carleton, W., McCauley, B., Costopoulos, A., & Collard, M. (2018). An evolutionary agent-based model contradicts Dunnell’s version of the waste hypothesis for cultural elaboration.

Carney, M., Tushingham, S., McLaughlin, T., & d’Alpoim Guedes, J. (2021). Harvesting strategies as evidence for 4000 years of camas (Camassia quamash) management in the North American Columbia Plateau. _Royal Society Open Science_ 8(4), 202213.

Carney, M. and Davies, B., (2020). Agent-Based Modeling, Scientific Reproducibility, and Taphonomy: A Successful Model Implementation Case Study. _Journal of Computer Applications in Archaeology_ 3(1), pp.182–196. DOI:

Carrer, F., Kossowski, T. M., Wilk, J., Pietrzak, M. B., & Bivand, R. S. (2021). The application of Local Indicators for Categorical Data (LICD) to explore spatial dependence in archaeological spaces. _Journal of Archaeological Science_, 126, 105306.

Carrero-Pazos, M. (2023). Análisis de patrones espaciales de puntos para el estudio de tendencias locacionales en distribuciones de yacimientos arqueológicos. Vegueta: Anuario de la Facultad de Geografía e Historia, 97–114. https://doi.org/10.51349/veg.2023.1.04

Carrero-Pazos, M., Bevan, A., & Lake, M. W. (2019). The spatial structure of Galician megalithic landscapes (NW iberia): A case study from the Monte Penide region. _Journal of Archaeological Science_, 108, 104968. https://doi.org/10.1016/j.jas.2019.05.004

Carrignon, S., Brughmans, T., & Romanowska, I. (2020). Tableware trade in the Roman East: Exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation. _PloS one_, 15(11), ,[OSF repo](https://osf.io/s5mdw),[associated R code](https://github.com/simoncarrignon/abc-pandora) (notes: this paper combine multiple projects written in different C++/pyton/R)

Cascalheira, J., Gonçalves, C. and Maio D. (2020). The spatial patterning of Middle Paleolithic human settlement in westernmost Iberia. _Journal of Quaternary Science_ https://doi.org/10.1002/jqs.3286

Cascalheira, João. (2019). Territoriality and the organization of technology during the Last Glacial Maximum in southwestern Europe. _PloS one_, 14(12). https://doi.org/10.1371/journal.pone.0225828

Cegielski, W., Snitker, G., Barton, C. M., Bernabeu Aubán, J., Cortell-Nicolau, A., Pardo-Gordó, S., Bergin, S., & Castillo, A. D. (2023). A multi-method approach with machine learning to evaluating the distribution and intensity of prehistoric land use in Eastern Iberia. _Quaternary International_. https://doi.org/10.1016/j.quaint.2023.08.011

Chan, B, Francisco Gibaja J, García-Díaz V, Hoggard CS, Mazzucco N, Rowland JT, et al. (2020). Towards an understanding of retouch flakes: A use-wear blind test on knapped stone microdebitage. _PLoS ONE_ 15(12): e0243101. https://doi.org/10.1371/journal.pone.0243101

Chen, Y. and B. Marwick (2023). Women in the Lab, Men in the Field? Correlations between Gender and Research Topics at Three Major Archaeology Conferences, _Journal of Field Archaeology_, https://doi.org/10.1080/00934690.2023.2261083

Cheung, C., & Szpak, P. (2020). Interpreting Past Human Diets Using Stable Isotope Mixing Models. Journal of Archaeological Method and Theory.

Cheung, C., & Szpak, P. (2021). Interpreting Past Human Diets Using Stable Isotope Mixing Models—Best Practices for Data Acquisition. Journal of Archaeological Method and Theory.

Clarkson, C., Mike Smith, Ben Marwick, Richard Fullagar, Lynley A. Wallis, Patrick Faulkner, Tiina Manne, Elspeth Hayes, Richard G. Roberts, Zenobia Jacobs, Xavier Carah, Kelsey M. Lowe, Jacqueline Matthews, S. Anna Florin (2015). The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): A site in northern Australia with early occupation. _Journal of Human Evolution_ 8, 46–64 [http://dx.doi.org/10.1016/j.jhevol.2015.03.014](http://dx.doi.org/10.1016/j.jhevol.2015.03.014)

Cobos, V. A., Postillone, M. B., Bernal, V., & Perez, S. I. (2022). Spatio-temporal demographic dynamics of the human populations from Northwest Patagonia and central Chile during the Pleistocene-Holocene. _Journal of Archaeological Science: Reports_, 44, 103547. https://doi.org/10.1016/j.jasrep.2022.103547

Cochrane, E. E., Tautunu, A. A. M. M., & DiNapoli, R. J. (2019). Hypotheses to explain the few early coastal archaeological deposits in Sāmoa: Preliminary evaluations. _Journal of Archaeological Science: Reports_, 26, 101931.

Coco, E., & Iovita, R. (2020). Time-dependent taphonomic site loss leads to spatial averaging: implications for archaeological cultures. _Humanities and Social Sciences Communications_, 7(1), 1-9.

Coco, E., Holdaway, S. & Iovita, R. (2020). The Effects of Secondary Recycling on the Technological Character of Lithic Assemblages. _Journal of Paleolithic Archaeology_

Codding, B. F., Brenner Coltrain, J., Louderback, L., Vernon, K. B., Magargal, K. E., Yaworsky, P. M., Robinson, E., Brewer, S. C., & Spangler, J. D. (2022). Socioecological Dynamics Structuring the Spread of Farming in the North American Basin-Plateau Region. Environmental Archaeology, 27(4), 434–446. https://doi.org/10.1080/14614103.2021.1927480

Cole, K. E., Yaworsky, P. M., & Hart, I. A. (2022). Evaluating statistical models for establishing morphometric taxonomic identifications and a new approach using Random Forest. _Journal of Archaeological Science_ 143, 105610. https://doi.org/10.1016/j.jas.2022.105610

Coltofean-Arizancu, L., Gaydarska, B., Plutniak, S., Mary, L., Hlad, M., Algrain, I., Sengeløv, A. (2023). Harassment, assault, bullying and intimidation (HABI) in archaeology: A Europe-wide survey. _Antiquity_ 1-19. http://doi.org/10.15184/aqy.2023.58

Conrad, C., R. Shoocongdej, B. Marwick, et al. (2021). Re-Evaluating Pleistocene–Holocene Occupation of Cave Sites in North-West Thailand: New Radiocarbon and Luminescence Dating. _Antiquity_ https://doi.org/10.15184/aqy.2021.44

Conrad, C., Higham, C., Eda, M. and Marwick, B. (2016). Paleoecology and Forager Subsistence Strategies During the Pleistocene-Holocene Transition: A Reinvestigation of the Zooarchaeological Assemblage from Spirit Cave, Mae Hong Son Province, Thailand. _Asian Perspectives_ 55(1). https://github.com/cylerc/AP_SC

Contreras, Daniel A., Joël Guiot, Romain Suarez, and Alan Kirman. (2018). "Reaching The Human Scale: A Spatial and Temporal Downscaling Approach To The Archaeological Implications Of Paleoclimate Data." _Journal of Archaeological Science_ 93:54-67.[doi:10.1016/j.jas.2018.02.013](https://doi.org/10.1016/j.jas.2018.02.013)

Contreras, Daniel A. and John Meadows. (2014). “Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach.” _Journal of Archaeological Science_ 52:591-608. [doi:10.1016/j.jas.2014.05.030](http://www.sciencedirect.com/science/article/pii/S0305440314002088)

Coto-Sarmiento, M. & Rubio-Campillo, X. (2021). The tracing of trade: Exploring the patterns of olive oil production and distribution from Roman Baetica. Archaelogical and Anthropological Sciences,13,70.

Coto-Sarmiento, M., Rubio-Campillo, X., Remesal, J., (2018). Identifying social learning between Roman amphorae workshops through morphometric similarity. _Journal of Archaeological Science_ 96, 117–123. ,

Courtenay, L.A., Herranz-Rodrigo, D., González-Aguilera, D. et al. (2021). Developments in data science solutions for carnivore tooth pit classification. _Scientific Reports_ 11, 10209

Cortell-Nicolau, A., García-Puchol, O., & Juan-Cabanilles, J. (2023). The geometric microliths of cueva de la cocina and their significance in the mesolithic of Eastern Iberia: A morphometric study. _Quaternary International_ https://doi.org/10.1016/j.quaint.2023.05.014

Cortell-Nicolau A, García-Puchol O, Barrera-Cruz M, García-Rivero D (2021). The spread of agriculture in Iberia through Approximate Bayesian Computation and Neolithic projectile tools. PLoS ONE 16(12): e0261813. doi:10.1371/journal.pone.0261813

Crawford, K., Huster, A., Peeples, M., Gauthier, N., Smith, M., Lobo, J., Lawrence, D. (2023). A systematic approach for studying the persistence of settlements in the past. Antiquity, 97(391), 213-230. https://doi.org/10.15184/aqy.2022.175

Crema, E. R., Stevens, C. J., & Shoda, S. (2022). Bayesian analyses of direct radiocarbon dates reveal geographic variations in the rate of rice farming dispersal in prehistoric Japan. _Science Advances_, 8(38), eadc9171. https://doi.org/10.1126/sciadv.adc9171

Crema, E. R. (2022). Statistical Inference of Prehistoric Demography from Frequency Distributions of Radiocarbon Dates: A Review and a Guide for the Perplexed. _Journal of Archaeological Method Theory_ https://doi.org/10.1007/s10816-022-09559-5

Crema ER, Shoda S (2021). A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). _PLOS ONE_ 16(5): e0251695. https://doi.org/10.1371/journal.pone.0251695

Crema, E. R., and A. Bevan (2020). INFERENCE FROM LARGE SETS OF RADIOCARBON DATES: SOFTWARE AND METHODS. _Radiocarbon_ :1–17. https://doi.org/10.1017/RDC.2020.95

Crema, E.R., Kandler, A., Shennan, S., (2016). Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions, _Scientific Reports_ 6, 39122.

Crema, E. R., J. Habu, K. Kobayashi and M. Madella (2016). "Summed Probability Distribution of 14C Dates Suggests Regional Divergences in the Population Dynamics of the Jomon Period in Eastern Japan." [_PLoS ONE_ 11(4): e0154809.](http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0154809), [GitHub repo](https://github.com/ercrema/Jomon_SPD_Comparison), [Zenodo repo](http://dx.doi.org/10.5281/zenodo.47339).

Crema, E.R., K. Edinborough, Giusti, D., Konidaris, G. E., Tourloukis, V., Marini, M., Maron, M., Zerboni, A., … Harvati, K. (2019). Recursive anisotropy: a spatial taphonomic study of the Early Pleistocene vertebrate assemblage of Tsiotra Vryssi, Mygdonia Basin, Greece. Boreas, 0(0). https://doi.org/10.1111/bor.12368T.

Crema, E.R., Kerig, S.J. Shennan (2014). An Approximate Bayesian Computation approach for inferring patterns of cultural evolutionary change, _Journal of Archaeological Science_, Volume 50 Pages 160-170 http://dx.doi.org/10.1016/j.jas.2014.07.014

Crema, E.R., Bevan, A., Shennan, S. (2017). Spatio-temporal approaches to archaeological radiocarbon dates. Journal of Archaeological Science 87, 1-9.https://github.com/ercrema/JAS2017_spatialSPD

Crema E.R. (2014). A simulation model of fission-fusion dynamics and long-term settlement change. Journal of Archaeological Method and Theory , 21, 385-404 https://github.com/ercrema/fissionfusion2014

Crema, E.R., Lake, M. (2015) Cultural Incubators and Spread of Innovation (2015), Human Biology, 87 (3), 151-168 https://github.com/ercrema/CulturalIncubatorSourceCodes

Crema, E.R., Kobayashi, K., (2020). A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. Journal of Archaeological Science 117, 105136. https://doi.org/10.1016/j.jas.2020.105136 [GitHub repo](https://github.com/ercrema/jomonPhasesAndPopulation), [Zenodo repo](https://doi.org/10.5281/zenodo.3719507).

Crema, E. R. (2024). A Bayesian alternative for aoristic analyses in archaeology. _Archaeometry_. https://doi.org/10.1111/arcm.12984

Crema, E. R., Bloxam, A., Stevens, C. J., & Vander Linden, M. (2024). Modelling diffusion of innovation curves using radiocarbon data. _Journal of Archaeological Science_, 165, 105962.

Cucart-Mora, C., Gómez-Puche, M., Romano, V. et al. (2022). Reconstructing Mesolithic social networks on the Iberian Peninsula using ornaments. _Archaeological and Anthropological Sciences_ 14, 174. https://doi.org/10.1007/s12520-022-01641-z

Daems, D., Coco, E., Gillreath-Brown, A., & Kafetzaki, D. (2023). The Effects of Time-Averaging on Archaeological Networks. _Journal of Archaeological Method and Theory_ https://doi.org/10.1007/s10816-023-09608-7

Danielisová, A., Pajdla, P., Bursák, D., Strnad, L., Trubač, J. and Kmošek, J., (2021). Claiming the land or protecting the goods? The Duchcov hoard in Bohemia as a proxy for ‘Celtic migrations’ in Europe in the 4th century BCE. Journal of Archaeological Science 127, 105314. [https://doi.org/10.1016/j.jas.2020.105314](https://doi.org/10.1016/j.jas.2020.105314); [GitHub repo](https://github.com/petrpajdla/duchcov_si).

Dapschauskas, R., Göden, M. B., Sommer, C., & Kandel, A. W. (2022). The Emergence of Habitual Ochre Use in Africa and its Significance for The Development of Ritual Behavior During The Middle Stone Age. _Journal of World Prehistory_, 35(3), 233–319. https://doi.org/10.1007/s10963-022-09170-2. [Zenodo repo](https://doi.org/10.5281/zenodo.5883926)

Davis, D.S., G. Caspari, C. P. Lipo, and M. C. Sanger (2021). Deep Learning Reveals Extent of Archaic Native American Shell-Ring Building Practices. _Journal of Archaeological Science_ 132: 105433. https://doi.org/10.1016/j.jas.2021.105433

Davis, D. S., Andriankaja, V., Carnat, T. L., Chrisostome, Z. M., Colombe, C., Fenomanana, F., Hubertine, L., Justome, R., Lahiniriko, F., Léonce, H., Manahira, G., Pierre, B. V., Roi, R., Soafiavy, P., Victorian, F., Voahirana, V., Manjakahery, B., & Douglass, K. (2020). Satellite-based remote sensing rapidly reveals extensive record of Holocene coastal settlement on Madagascar. Journal of Archaeological Science, 115, 105097. https://doi.org/10.1016/j.jas.2020.105097

Davis, D. S., DiNapoli, R. J., Sanger, M. C., & Lipo, C. P. (2020). The Integration of Lidar and Legacy Datasets Provides Improved Explanations for the Spatial Patterning of Shell Rings in the American Southeast. Advances in Archaeological Practice, 8(4), 361–375. https://doi.org/10.1017/aap.2020.18

Davis, D.S.; DiNapoli, R.J.; Douglass, K. (2020). Integrating Point Process Models, Evolutionary Ecology and Traditional Knowledge Improves Landscape Archaeology—A Case from Southwest Madagascar. _Geosciences_ , 10, 287.

de la Peña P, Thomas M, Molefyane TR (2022). Particle size distribution: An experimental study using southern African reduction methods and raw materials. _PLOS ONE_ 17(12): e0278867. https://doi.org/10.1371/journal.pone.0278867

Díaz-Rodríguez, M. Ramón Fábregas-Valcarce, Augusto Pérez-Alberti (2023). A predictive model for Palaeolithic sites: A case study of Monforte de Lemos basin, NW Iberian Peninsula, _Journal of Archaeological Science: Reports_, Volume 49, 104012, https://doi.org/10.1016/j.jasrep.2023.104012

Díaz-Rodríguez, M., & Fábregas-Valcarce, R. (2022). Evaluating the effectiveness of three spatial cluster analysis methods on Palaeolithic site location distributions in Galicia, NW Iberian Peninsula. _Journal of Archaeological Science: Reports_, 41, 103323. https://doi.org/10.1016/j.jasrep.2021.103323

DiNapoli, R. J., Crema, E. R., Lipo, C. P., Rieth, T. M., & Hunt, T. L. (2021). Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island). Nature Communications, 12(1), 3939. https://doi.org/10.1038/s41467-021-24252-z

DiNapoli, R. J., Rieth, T. M., Lipo, C. P., & Hunt, T. L. (2020). A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). _Journal of Archaeological Science_, 105094.

DiNapoli, R. J., Lipo, C. P., Brosnan, T., Hunt, T. L., Hixon, S., Morrison, A. E., & Becker, M. (2019). Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLOS ONE, 14(1), e0210409. https://doi.org/10.1371/journal.pone.0210409

Dolbunova, E., Lucquin, A., McLaughlin, T.R. et al. (2022) The transmission of pottery technology among prehistoric European hunter-gatherers. Nature Human Behavior https://doi.org/10.1038/s41562-022-01491-8

Dombrosky, J., Ainsworth, C. S., Judkins, A. A., Valesca Meyer, J., Adler, M. A., & Lena Jones, E. (2023). Reconsidering archaeological garden hunting: A view from the northern U.S. Southwest. _Journal of Archaeological Science: Reports_, 51, 104194. https://doi.org/10.1016/j.jasrep.2023.104194

Dombrosky, Jonathan, Thomas F. Turner, Alexandra Harris, and Emily Lena Jones. (2022). “Body Size from Unconventional Specimens: A 3D Geometric Morphometrics Approach to Fishes from Ancestral Pueblo Contexts.” _Journal of Archaeological Science_ 142: 105600.

Dombrosky, J. (2020). A ~1000-year 13C Suess correction model for the study of past ecosystems. _The Holocene_, 30(3), 474–478. https://doi.org/10.1177/0959683619887416

Dosseto, A,. and B. Marwick (2022). UThwigl — An R Package for Closed- and Open-System Uranium–Thorium Dating. _Quaternary Geochronology_ 67: 101235 https://doi.org/10.1016/j.quageo.2021.101235

Drake BL, Wills WH, Hamilton MI, Dorshow W (2014). Strontium Isotopes and the Reconstruction of the Chaco Regional System: Evaluating Uncertainty with Bayesian Mixing Models. PLoS ONE 9(5): e95580. [doi:10.1371/journal.pone.0095580](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095580)

Drake, Brandon L., David T. Hanson, James L. Boone (2012). The use of radiocarbon-derived Δ13C as a paleoclimate indicator: applications in the Lower Alentejo of Portugal, _Journal of Archaeological Science_, Volume 39, Issue 9, September 2012, Pages 2888-2896, [http://dx.doi.org/10.1016/j.jas.2012.04.027](http://www.sciencedirect.com/science/article/pii/S0305440312001471)

Drake, Brandon L., (2012). The influence of climatic change on the Late Bronze Age Collapse and the Greek Dark Ages, _Journal of Archaeological Science_, Volume 39, Issue 6, June 2012, Pages 1862-1870 [http://dx.doi.org/10.1016/j.jas.2012.01.029](http://www.sciencedirect.com/science/article/pii/S0305440312000416)

Drake, Brandon L., WH Wills, and Erik B Erhardt (2012). The 5.1 ka aridization event, expansion of piñon-juniper woodlands, and the introduction of maize (Zea mays) in the American Southwest The Holocene December 2012 22: 1353-1360, first published on July 9, 2012 [doi:10.1177/0959683612449758](http://hol.sagepub.com/content/22/12/1353.short)

Dye, T. S., Buck, C. E., DiNapoli, R. J., & Philippe, A. (2023). Bayesian chronology construction and substance time. Journal of Archaeological Science, 153, 105765. https://doi.org/10.1016/j.jas.2023.105765

Dye, Thomas S. (2011). “A Model-based Age Estimate for Polynesian Colonization of Hawai‘i”. _Archaeology in Oceania_ 46, pp. 130–138 [https://github.com/tsdye/hawaii-colonization](https://github.com/tsdye/hawaii-colonization)

Dye, T. S. (2016). "Long-term rhythms in the development of Hawaiian social stratification." _Journal of Archaeological Science_ 71: 1-9.

Eberl, M., Bell, C., Spencer-Smith, J., Raj, M., Sarubbi, A., Johnson, P., McBride, M. (2023). Machine Learning–Based Identification of Lithic Microdebitage. Advances in Archaeological Practice, 1-12. http://doi.org/10.1017/aap.2022.35

Edinborough, K., Porčić, M., Martindale, A., Brown, T. J., Supernant, K., & Ames, K. M. (2017). Radiocarbon test for demographic events in written and oral history. _Proceedings of the National Academy of Sciences_, 114(47), 12436-12441.

Ellis, E.C., N. Gauthier, K. Klein Goldewijk, R. Bliege Bird, N. Boivin, S. Diaz, D. Fuller, J. Gill, J. Kaplan, N. Kingston, H. Locke, C. McMichael, D. Ranco, T. Rick, M.R. Shaw, L. Stephens, J.C. Svenning, J.E.M. Watson, (2021). People have shaped most of terrestrial nature for at least 12,000 years. _Proceedings of the National Academy of Sciences_. https://doi.org/10.1073/pnas.2023483118

Falcucci, A., Karakostis, F. A., Göldner, D., & Peresani, M. (2022). Bringing shape into focus: Assessing differences between blades and bladelets and their technological significance in 3D form. _Journal of Archaeological Science: Reports_, 43, 103490. https://doi.org/10.1016/j.jasrep.2022.103490

Falcucci, A., & Peresani, M. (2022). The contribution of integrated 3D model analysis to Protoaurignacian stone tool design. _PLOS ONE_, 17(5), e0268539. https://doi.org/10.1371/journal.pone.0268539

Falótico, T., Valença, T., Verderane, M. P., & Fogaça, M. D. (2022). Stone tools differences across three capuchin monkey populations: Food’s physical properties, ecology, and culture. _Scientific Reports_, 12(1), Article 1. https://doi.org/10.1038/s41598-022-18661-3

Farahani, A., Miller, M. J., Porter, B. W., Dawson, T., & Routledge, B. (2023). Stable isotopes of archaeological and modern semi-terrestrial crabs (Potamon potamios) provide paleoecological insights into brachyuran ecology and human resource acquisition in late Holocene Jordan. _Quaternary International_. https://doi.org/10.1016/j.quaint.2023.03.001

Farahani, A. (2018). A 2500-year historical ecology of agricultural production under empire in Dhiban, Jordan. _Journal of Anthropological Archaeology_, 52, 137-155.

Field, S., Glowacki, D.M. & Gettler, L.T. (2022). The Importance of Energetics in Archaeological Least Cost Analysis. _Journal of Archaeological Method and Theory_ https://doi.org/10.1007/s10816-022-09564-8

Fitzhugh, B., Brown, W. A., Misarti, N., Takase, K., & Tremayne, A. H. (2022). Human Paleodemography and Paleoecology of the North Pacific Rim from the Mid to Late Holocene. _Quaternary Research_ 108, 123–149. https://doi.org/10.1017/qua.2022.35

Florin, S.A., Roberts, P., Marwick, B. et al. (2021). Pandanus nutshell generates a palaeoprecipitation record for human occupation at Madjedbebe, northern Australia. _Nature Ecology and Evolution_

Foecke, K. K., Hammond, A. S., & Kelley, J. (2022). Portable x-ray fluorescence spectroscopy geochemical sourcing of Miocene primate fossils from Kenya. _Journal of Human Evolution_, 170, 103234. https://doi.org/10.1016/j.jhevol.2022.103234

Fontana, G., & Bernard, S. (2023). A new method for the energetics analysis of polygonal masonry in Samnite hillforts (Italy). _Journal of Archaeological Science_, 105730. https://doi.org/10.1016/j.jas.2023.105730

Freeman, J., Robinson, E., Beckman, N. G., Bird, D., Baggio, J. A., & Anderies, J. M. (2020). The global ecology of human population density and interpreting changes in paleo-population density. _Journal of Archaeological Science_, 120, 105168.

Frederiks, P. L. (2022). Rekonstruktion einer übermoorten, prähistorischen Landschaft bei Wanna, Ldkr. Cuxhaven. Siedlungs- und Küstenforschung im südlichen Nordseegebiet 45, 43–100. https://zenodo.org/record/7404607

Fusco, M., Carletti, E., Gallinaro, M., Zerboni, A., & Spinapolice, E. (2021). Lithic variability and raw material exploitation at the Middle Stone Age (MSA) site of Gotera, southern Ethiopia: A combined technological and quantitative approach. _Journal of Lithic Studies_, 8(1), 29 p. https://doi.org/10.2218/jls.6530

Gantley, M., Whitehouse, H., & Bogaard, A. (2018). Material Correlates Analysis (MCA): An Innovative way of Examining Questions in Archaeology Using Ethnographic Data. _Advances in Archaeological Practice_, 6(4), 328-341. http://doi.org/10.1017/aap.2018.9

Garland, N. (2021). TRAC at 30: A Bibliometric Analysis of the TRAC Community. _Theoretical Roman Archaeology Journal_, 4(1), Article 1. https://doi.org/10.16995/traj.4344

Garvey, Raven. (2018). Current and potential roles of archaeology in the development of cultural evolutionary theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1743), 20170057. https://doi.org/10.1098/rstb.2017.0057

Gaydarska, B., Roe, J., & Slavchev, V., (2024). Dietary Variability in the Varna Chalcolithic Cemeteries. _European Journal of Archaeology_.

Gauthier, Nicolas (2021). Hydroclimate variability influenced social interaction in the prehistoric american southwest. _Frontiers in Earth Science_ 8:713. DOI:10.3389/feart.2020.620856.

Giomi, E., Mills, B. J., Aragon, L. D., Bellorado, B. A., & Peeples, M. A. (2021). Reading between the Lines: The Social Value of Dogoszhi Style in the Chaco World. _American Antiquity_, 1–24. https://doi.org/10.1017/aaq.2021.50

Giusti, D., Konidaris, G. E., Tourloukis, V., Marini, M., Maron, M., Zerboni, A., … Harvati, K. (2019). Recursive anisotropy: a spatial taphonomic study of the Early Pleistocene vertebrate assemblage of Tsiotra Vryssi, Mygdonia Basin, Greece. _Boreas_, 48(3), 713--730. https://doi.org/10.1111/bor.12368

Giusti, D., Tourloukis, V., Konidaris, G., Thompson, N., Karkanas, P., Panagopoulou, E., & Harvati, K. (2018). Beyond maps: patterns of formation processes at the Middle Pleistocene open-air site of Marathousa 1, Megalopolis Basin, Greece. _Quaternary International_ 497, 137--153

Giusti, D. and M. Arzarello, (2016). The need for a taphonomic perspective in spatial analysis: Formation processes at the Early Pleistocene site of Pirro Nord (P13), Apricena, Italy, _Journal of Archaeological Science: Reports_ 8, 235--249 code and data:

Goder-Goldberger, M., Marreiros, J., Paixão, E. et al. (2025). Incised stone artefacts from the Levantine Middle Palaeolithic and human behavioural complexity. _Archaeological and Anthropological Sciences_ 17, 27 https://doi.org/10.1007/s12520-024-02111-4

González-Molina I, Jiménez-García B, Maíllo-Fernández JM, Baquedano E, Domínguez-Rodrigo M (2020). Distinguishing Discoid and Centripetal Levallois methods through machine learning. _PLOS ONE_ 15(12): e0244288.

Graham, S., Gupta, N., Smith, J., Angourakis, A., Reinhard, A., Ellenberger, K., Batist, Z., Rivard, J., Marwick, B., Carter, M., Compton, B., Blades, R., Wood, C., Nobles, G. (2019). _The Open Digital Archaeology Textbook_ Code notebooks and repositories, and text source at

Gravel-Miguel, C., De Vynck, J., Wren, C. D., Murray, J. K., & Marean, C. W. (2022). Were prehistoric coastal sites more intensively occupied than inland sites? Using an agent-based model to understand the intensity of prehistoric coastal occupation, and what it means for studies on the evolution of the coastal adaptation. _Quaternary International_ https://doi.org/10.1016/j.quaint.2022.02.003

Gravel-Miguel, C., Murray, J. K., Schoville, B. J., Wren, C. D., & Marean, C. W. (2021). Exploring variability in lithic armature discard in the archaeological record. _Journal of Human Evolution_, 155, 102981.

Gregory, A., Mitchell, P. & Pargeter, J. (2023). Raw Material Surveys and Their Behavioral Implications in Highland Lesotho. _Journal of Paleolithic Archaeology_ 6, 18 https://doi.org/10.1007/s41982-023-00138-y

Großmann R, Weinelt M, Müller J (2023). Demographic dynamics between 5500 and 3500 calBP (3550–1550 BCE) in selected study regions of Central Europe and the role of regional climate influences. PLOS ONE 18(10): e0291956. https://doi.org/10.1371/journal.pone.0291956

Groucutt, H. S., Carleton, W. C., Fenech, K., Gauci, R., Grima, R., Scerri, E. M. L., Stewart, M., & Vella, N. C. (2022). The 4.2 ka Event and the End of the Maltese “Temple Period.” Frontiers in Earth Science, 9, 1227.

Groucutt, H.S., White, T.S., Scerri, E.M.L. et al. (2021). Multiple hominin dispersals into Southwest Asia over the past 400,000 years. _Nature_

Hageneuer, S. & Schmidt, S. C. (2019). Monumentality by numbers. In: Buccellati, F., Hageneuer, S., van der Heyden, S. & Levenson, F. (Eds.), _Size Matters - Understanding Monumentality Across Ancient Civilizations_. Bielefeld: transcript Verlag: 291-308. https://doi.org/10.14361/9783839445389-017

Hatton, A., Breeze, P. S., Guagnin, M., al-Jibrin, F., Alsharekh, A. M., Petraglia, M., & Groucutt, H. S. (2024). Landscape positioning of Neolithic mustatil stone structures along the margins of the Nefud Desert, Saudi Arabia. _The Holocene_ https://doi.org/10.1177/09596836241275010

Hatton A., Collins B, Schoville BJ, Wilkins J (2022). Ostrich eggshell beads from Ga-Mohana Hill North Rockshelter, southern Kalahari, and the implications for understanding social networks during Marine Isotope Stage 2. PLoS ONE 17(6): e0268943. http://doi.org/10.1371/journal.pone.0268943

Hausmann, N., Meredith-Williams, M., & Laurie, E. (2020). Shellfish resilience to prehistoric human consumption in the southern Red Sea: Variability in Conomurex fasciatus across time and space. _Quaternary International_. http://doi.org/10.1016/j.quaint.2020.04.034

Hecht, E.E., Pargeter, J., Khreisheh, N. et al. (2023). Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 13, 2877 https://doi.org/10.1038/s41598-023-29994-y

Hegmon M, Peeples MA, on behalf of the LTVTP-NABO collaboration (2018). The human experience of social transformation: Insights from comparative archaeology. _PLOS ONE_ 13(11): e0208060. https://doi.org/10.1371/journal.pone.0208060

Hermes, T. R., Schmid, C., Tabaldiev, K., & Motuzaite Matuzeviciute, G. (2022). Carbon and oxygen stable isotopic evidence for diverse sheep and goat husbandry strategies amid a Final Bronze Age farming milieu in the Kyrgyz Tian Shan. _International Journal of Osteoarchaeology_, 1– 12. https://doi.org/10.1002/oa.3103

Hermann, Aymeric et al. (2023). Artifact geochemistry demonstrates long-distance voyaging in the Polynesian Outliers. _Science Advances_ 9, eadf4487 https://doi.org/10.1126/sciadv.adf4487

Herrera Malatesta, E., Ulloa Hung, J. and Hofman, C.L., (2023). Looking at the Big Picture: Using Spatial Statistical Analyses to Study Indigenous Settlement Patterns in the North-Western Dominican Republic. _Journal of Computer Applications in Archaeology_, 6(1), pp.16–28. http://doi.org/10.5334/jcaa.83

Hewitt, Richard J., Francis F. Wenban-Smith, and Martin R. Bates. (2020). "Detecting Associations between Archaeological Site Distributions and Landscape Features: A Monte Carlo Simulation Approach for the R Environment" Geosciences 10, no. 9: 326. https://doi.org/10.3390/geosciences10090326

Hinz, Martin and Heitz, Caroline. (2022). "Unsupervised Classification of Neolithic Pottery From the Northern Alpine Space Using t-SNE and HDBSCAN" _Open Archaeology_, vol. 8, no. 1, , pp. 1183-1217. https://doi.org/10.1515/opar-2022-0274

Hinz, M., (2020). Sensitivity of Radiocarbon Sum Calibration. _Journal of Computer Applications in Archaeology_, 3(1), pp.238–252. DOI: http://doi.org/10.5334/jcaa.53

Hoebe, P. W., Peeters, J. H. M., & Arnoldussen, S. (2023). Parsing prehistoric patterns: Prospects and limitations of a big radiocarbon dataset for understanding the impact of climate on Late Palaeolithic and Mesolithic populations in northwest Europe (16–7.5 ka calBP). _Journal of Archaeological Science: Reports_, 49, 103944. https://doi.org/10.1016/j.jasrep.2023.103944

Hoggard, C. S., & Stade, C. M. (2019). The efficiency of Middle Palaeolithic technological blade strategies: an experimental investigation. Lithics–The Journal of the Lithic Studies Society, (39), 52.

Hoggard, C. S., McNabb, J., & Cole, J. N. (2019). The Application of Elliptic Fourier Analysis in Understanding Biface Shape and Symmetry Through the British Acheulean. _Journal of Paleolithic Archaeology_.

Horta, P., Bicho, N., & Cascalheira, J. (2022). Lithic bipolar methods as an adaptive
strategy through space and time. Journal of Archaeological Science: Reports,
41, 103263.

Horta, P., Cascalheira, J., & Bicho, N. (2019). The Role of Lithic Bipolar Technology in Western Iberia’s Upper Paleolithic: the Case of Vale Boi (Southern Portugal). _Journal of Paleolithic Archaeology_

Hu, Y., Marwick, B., Zhang, J.-F., Rui, X., Hou, Y.-M., Yue, J.-P., ... Li, B. (2018). Late Middle Pleistocene Levallois stone-tool technology in southwest China. _Nature_

Huffer, D. and Graham, S. (2017). The Insta-Dead: the rhetoric of the human remains trade on Instagram, _Internet Archaeology_ 45. , code & data:

Huffer, D. and Graham, S. (2018). Fleshing Out the Bones: Studying the Human Remains Trade with Tensorflow and Inception, _Journal of Computer Applications in Archaeology_ 1(1), pp.55-063. , code & data:

Hussain, S.T., Riede, F., Matzig, D.N. et al. A pan-European dataset revealing variability in lithic technology, toolkits, and artefact shapes ~15-11 kya. _Scientific Data_ 10, 593 (2023). https://doi.org/10.1038/s41597-023-02500-9

Iminjili, V., Stewart, M., Culley, C., Hixon, S., Goldstein, S., Bleasdale, M., Jesús Sanchez Flores, A., Lucas, M., Ilgner, J., Prendergast, M. E., Crowther, A., Boivin, N., & Roberts, P. (2023). Late Pleistocene to late Holocene palaeoecology and human foraging at Kuumbi Cave, Zanzibar Island. Frontiers in _Environmental Archaeology_, 2. https://www.frontiersin.org/articles/10.3389/fearc.2023.1080785

Ivanovaitė, L., Serwatka, K., Hoggard, C., Sauer, F., & Riede, F. (2020). All these Fantastic Cultures? Research History and Regionalization in the Late Palaeolithic Tanged Point Cultures of Eastern Europe. _European Journal of Archeology_, 23 (2), 162-185. doi:10.1017/eaa.2019.59

Kahn, J. G., Buffington, A., Escue, C., & Crabtree, S. A. (2022). Social and Ecological Factors Affect Long-Term Resilience of Voyaging Canoes in Pre-contact Eastern Polynesia: A Multiproxy Approach From the ArchaeoEcology Project. _Frontiers in Ecology and Evolution_, 9. https://www.frontiersin.org/article/10.3389/fevo.2021.750351

Kafetzaki, D., Poblome, J. & Aerts, J. (2023). Fuzzy Typological (Re)arrangement: a Prototype of Rethinking the Typology of Roman Tablewares from Sagalassos, Southwest Anatolia. _Journal of Archaeological Method and Theory_ https://doi.org/10.1007/s10816-023-09614-9

Kandel, A. W., Sommer, C., Kanaeva, Z., Bolus, M., Bruch, A. A., Groth, C., Haidle, M. N., Hertler, C., Heß, J., Malina, M., Märker, M., Hochschild, V., Mosbrugger, V., Schrenk, F., & Conard, N. J. (2023). The ROCEEH Out of Africa Database (ROAD): A large-scale research database serves as an indispensable tool for human evolutionary studies. _PLOS ONE_, 18(8), e0289513. https://doi.org/10.1371/journal.pone.0289513 https://doi.org/10.5281/zenodo.7669784

Kandler, A., Crema, E.R., (2019). Analysing Cultural Frequency Data: Neutral Theory and Beyond, in: Prentiss, A.M. (Ed.), Handbook of Evolutionary Research in Archaeology. Springer International Publishing, Cham, pp. 83–108. https://doi.org/10.1007/978-3-030-11117-5_5 [GitHub repo](https://github.com/ercrema/HERAChp.KandlerCrema)

Kelly, R. L., Mackie, M. E., & Kandel, A. W. (2023). Rapid increase in production of symbolic artifacts after 45,000 years ago is not a consequence of taphonomic bias. _Journal of Archaeological Science_, 160, 105885. https://doi.org/10.1016/j.jas.2023.105885

Kempf, M., & Günther, G. (2023). Point pattern and spatial analyses using archaeological and environmental data – A case study from the Neolithic Carpathian Basin. _Journal of Archaeological Science: Reports_, 47, 103747. https://doi.org/10.1016/j.jasrep.2022.103747

Key, A., Eren, M. I., Bebber, M. R., Buchanan, B., Cortell-Nicolau, A., Martín-Ramos, C., ... & Jarić, I. (2024). Identifying accurate artefact morphological ranges using optimal linear estimation: Method validation, case studies, and code. Journal of Archaeological Science, 162, 105921.

Kim, H., Lee, G.-A., & Crema, E. R. (2021). Bayesian analyses question the role of climate in Chulmun demography. Scientific Reports, 11(1), 23797. https://doi.org/10.1038/s41598-021-03180-4

King, C. L., Millard, A. R., Gröcke, D. R., Standen, V. G., Arriaza, B. T., & Halcrow, S. E. (2018). Marine resource reliance in the human populations of the Atacama Desert, northern Chile–A view from prehistory. _Quaternary Science Reviews_, 182, 163-174.

Kintigh, K.W. and Peeples, M.A., (2020). Estimating Population Growth Rates and Instantaneous Population from Periodized Settlement Data. Journal of Computer Applications in Archaeology, 3(1), pp.197–209. DOI:

Kelmelis, Saige, and Sharon N. DeWitte. (2021). “Urban and Rural Survivorship in Pre- and Post-Black Death Denmark.” _Journal of Archaeological Science: Reports_ 38: 103089.

Key, A, Ashton, N. (2022). Hominins likely occupied northern Europe before one million years ago. _Evolutionary Anthropology_ 2022; 1- 16. http://doi.org/10.1002/evan.21966

Kudo, Y., Sakamoto, M., Hakozaki, M., Stevens, C. J., & Crema, E. R. (2023). An Archaeological Radiocarbon Database of Japan _Journal of Open Archaeology Data_, DOI: https://doi.org/10.5334/joad.115

Krištuf, P., Janovský, M. P., Turek, J., Horák, J., Ferenczi, L., & Hejcman, M. (2023). Neolithic long barrows were built on the margins of settlement zones as revealed by elemental soil analysis at four sites in the Czech Republic. _Journal of Archaeological Science_, 160, 105881. https://doi.org/10.1016/j.jas.2023.105881

Krzyzanska, M., Hunt, H.V., Crema, E.R. et al. (2021). Modelling the potential ecological niche of domesticated buckwheat in China: archaeological evidence, environmental constraints and climate change. Veget Hist Archaeobot

Lancelotti, C. (2018). Not all that burns is wood. A social perspective on fuel exploitation and use during the Indus urban period (2600-1900 BC). _PLoS One_ 13(3): e0192364.

Lancelotti C, Ruiz-Pérez J, García-Granero JJ. (2017). Investigating fuel and fireplaces with a combination of phytoliths and multi-element analysis: an ethnographic experiment. _Vegetation History and Archaeobotany_ 26:75-83.

Lancelotti C, Martinez-Sánchez R, Vera-Rodríguez JC, Pérez-Jordà G, Peña-Chocarro L, Biagetti S, Madella M. (2021). Phytolith analyses from Khil and Kaf Taht el-Ghar (Western Maghreb): Plant use trajectories in a long-term perspective. _Journal of Archaeological Science: Reports_, 37, 102921.

Lancelotti, C., Balbo, A.L. Madella, M., Iriarte, E., Rojo-Guerra, M., Ignacio Royo, J., Tejedor, C., Garrido, R., García, I., Arcusa, H., Pérez Jordà, G., Peña-Chocarro, L. (2014). The missing crop: investigating the use of grasses at Els Trocs, a Neolithic cave site in the Pyrenees (1564 m asl). _Journal of Archaeological Science_ 42: 456-466.

Lawrence D, Palmisano A, de Gruchy MW (2021). Collapse and continuity: A multi-proxy reconstruction of settlement organization and population trajectories in the Northern Fertile Crescent during the 4.2kya Rapid Climate Change event. _PLoS ONE_ 16(1): e0244871.

Leggett, S. (2022). A Hierarchical Meta-Analytical Approach to Western European Dietary Transitions in the First Millennium AD. _European Journal of Archaeology_, 1-21. https://doi.org/10.1017/eaa.2022.23

Leggett, S. (2021). Migration and cultural integration in the early medieval cemetery of Finglesham, Kent, through stable isotopes. _Archaeol Anthropol Sci_ 13, 1. https://doi.org/10.1007/s12520-021-01429-7

Leplongeon, Alice, Clément Ménard, Vincent Bonhomme, and Eugenio Bortolini. (2020). “Backed Pieces and Their Variability in the Later Stone Age of the Horn of Africa.” _African Archaeological Review_.

Lewis, J. (2022). 2nd c. CE defenses around small towns in Roman Britain structured by road network connectivity. _Journal of Roman Archaeology_, 1–12. https://doi.org/10.1017/S1047759421000775

Lewis, J. (2021). Probabilistic Modelling for Incorporating Uncertainty in Least Cost Path Results: A Postdictive Roman Road Case Study. _Journal of Archaeological Method and Theory_ https://doi.org/10.1007/s10816-021-09522-w

Lewis, J. (2020). Visibility of the Gask Ridge road from simulated Watchtowers: A Monte Carlo testing approach. Journal of Archaeological Science: Reports, 33, 102482. https://doi.org/10.1016/j.jasrep.2020.102482

Lightfoot E and O'Connell TC (2016). “On The Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations.” PLoS ONE 11(4). [http://doi:10.1371/journal.pone.0153850](http://doi:10.1371/journal.pone.0153850), code and data: [https://www.repository.cam.ac.uk/handle/1810/252773](https://www.repository.cam.ac.uk/handle/1810/252773)

Li Li, Jonathan S. Reeves, Sam C. Lin, David R. Braun, Shannon P. McPherron, (2023). Did Early Pleistocene hominins control hammer strike angles when making stone tools? _Journal of Human Evolution_ https://doi.org/10.1016/j.jhevol.2023.103427.

Li, L., Reeves, J.S., Lin, S.C. et al. (2022). Quantifying knapping actions: a method for measuring the angle of blow on flakes. _Archaeological and Anthropological Sciences_ 14, 156 https://doi.org/10.1007/s12520-022-01626-y

Lin, S.C., White, L.T., Jatmiko et al. (2022). Characterising the stone artefact raw materials at Liang Bua, Indonesia. J Paleo Arch 5, 22. https://doi.org/10.1007/s41982-022-00133-9

Lin SC, Rezek Z, Abdolahzadeh A, Braun DR, Dogandžić T, Leader GM, et al. (2022). The mediating effect of platform width on the size and shape of stone flakes. PLoS ONE 17(1): e0262920. doi:10.1371/journal.pone.0262920

Lipo, C. P., Hunt, T. L., Horneman, R., & Bonhomme, V. (2016). Weapons of war? Rapa Nui mata’a morphometric analyses. _Antiquity_, 90(349), 172–187.

Liu, C., Khreisheh, N., Stout, D., & Pargeter, J. (2023). Differential effects of knapping skill acquisition on the cultural reproduction of Late Acheulean handaxe morphology: Archaeological and experimental insights. _Journal of Archaeological Science: Reports_, 49, 103974. https://doi.org/10.1016/j.jasrep.2023.103974

Llorente-Rodríguez, L., Craig, O. E., Colonese, A. C., von Tersch, M., Roselló-Izquierdo, E., González Gómez de Agüero, E., Fernández-Rodríguez, C., Quirós-Castillo, J. A., López-Arias, B., Marlasca-Martín, R., Nottingham, J., & Morales Muñiz, A. (2022). Elucidating historical fisheries’ networks in the Iberian Peninsula using stable isotopes. _Fish and Fisheries_, 00, 1– 12. https://doi.org/10.1111/faf.12655

Lombao, D., Cueva-Temprana, A., Mosquera, M., & Morales, J. I. (2020). A new approach to measure reduction intensity on cores and tools on cobbles: The Volumetric Reconstruction Method. Archaeological and Anthropological Sciences, 12(9), 222. https://doi.org/10.1007/s12520-020-01154-7

Lombao, D., Rabuñal, J.R., Morales, J.I. et al. (2022). The Technological Behaviours of Homo antecessor: Core Management and Reduction Intensity at Gran Dolina-TD6.2 (Atapuerca, Spain). Journal of Archaeological Method and Theory https://doi.org/10.1007/s10816-022-09579-1

Lowe, K., Wallis, L., Pardoe, C., Marwick, B., Clarkson, C., Manne, T., Smith, M. and R. Fullagar (2014). Ground-penetrating radar and burial practices in western Arnhem Land, Australia. _Archaeology in Oceania_ 49(3): 148–157 [http://onlinelibrary.wiley.com/doi/10.1002/arco.5039/abstract](http://onlinelibrary.wiley.com/doi/10.1002/arco.5039/abstract)

Machause López, S., & Diez Castillo, (2022). Analysing the sacred landscape in the Iberian Culture: GIS, caves and ritual performance. _Zephyrvs_, 90, 135-158. https://doi.org/10.14201/zephyrus202290135158

Mackay, Alex, Sam C. Lin, Lachlan S. Kenna, and Alex F. Blackwood. (2018). Variance in the Response of Silcrete to Rapid Heating Complicates Assumptions about Past Heat Treatment Methods.” _Archaeological and Anthropological Sciences_, June 20, 2018, 1–12. .

Mackay A, Sumner A, Jacobs Z, Marwick B, Bluff K and Shaw M (2014). Putslaagte 1 (PL1), the Doring River, and the later Middle Stone Age in southern Africa's Winter Rainfall Zone. _Quaternary International_ [http://dx.doi.org/10.1016/j.quaint.2014.05.007](http://dx.doi.org/10.1016/j.quaint.2014.05.007)

Maier, A., John, R., Linsel, F. et al. (2023). Analyzing Trends in Material Culture Evolution—a Case Study of Gravettian Points from Lower Austria and Moravia. _Journal of Paleolithic Archaeology_ 6, 15 https://doi.org/10.1007/s41982-023-00145-z

Marom, N., & Wolkowski, U. (2024). A note on predator-prey dynamics in radiocarbon datasets. _Peer Community Journal_, 4.

Marwick, B., Wang, L.-Y., Robinson, R., & Loiselle, H. (2019). How to Use Replication Assignments for Teaching Integrity in Empirical Archaeology. _Advances in Archaeological Practice_, 1–9.

Marwick, B., Hiscock, P., Sullivan, M., & Hughes, P. (2017). Landform boundary effects on Holocene forager landscape use in arid South Australia. _Journal of Archaeological Science: Reports_

Marwick, Ben, Elspeth Hayes, Chris Clarkson and Richard Fullagar (2017). Movement of lithics by trampling: An experiment in the Madjedbebe sediments, northern Australia. _Journal of Archaeological Science_ 79:73-85. , ,

Marwick, B., Van Vlack, H.G., Conrad, C., Shoocongdej, R., Thongcharoenchaikit, C., Kwak, S. (2016). Adaptations to sea level change and transitions to agriculture at Khao Toh Chong rockshelter, Peninsular Thailand, _Journal of Archaeological Science_ , ,

Marwick, B, C. Clarkson, S. O'Connor & S. Collins (2016). "Pleistocene-aged stone artefacts from Jerimalai, East Timor: Long term conservatism in early modern human technology in island Southeast Asia" _Journal of Human Evolution_ DOI: , ,

Marwick, B., & Birch, S. (2018). A Standard for the Scholarly Citation of Archaeological Data as an Incentive to Data Sharing. _Advances in Archaeological Practice_ 1-19

Marwick, B. (2017). Computational reproducibility in archaeological research: Basic principles and a case study of their implementation. _Journal of Archaeological Method and Theory_ 1-27. [doi: 10.1007/s10816-015-9272-9](http://dx.doi.org/10.1007/s10816-015-9272-9), [text source repo](https://github.com/benmarwick/basic_computational_reproducibility_case_study)

Marwick, B., (2013). Multiple Optima in Hoabinhian flaked stone artefact palaeoeconomics and palaeoecology at two archaeological sites in Northwest Thailand. _Journal of Anthropological Archaeology_ 32, 553-564. [http://dx.doi.org/10.1016/j.jaa.2013.08.004](http://dx.doi.org/10.1016/j.jaa.2013.08.004)

Marwick, B. (2013). Discovery of Emergent Issues and Controversies in Anthropology Using Text Mining, Topic Modeling, and Social Network Analysis of Microblog Content. In Yanchang Zhao, Yonghua Cen (eds) _Data Mining Applications with R_ Elsevier. p. 63-93 [https://github.com/benmarwick/AAA2011-Tweets](https://github.com/benmarwick/AAA2011-Tweets)

Matzig, D.N., Schmid, C. & Riede, F. (2023). Mapping the field of cultural evolutionary theory and methods in archaeology using bibliometric methods. _Humanities and Social Sciences Communications_ 10, 271 https://doi.org/10.1057/s41599-023-01767-y

Matzig, D.N., Hussain, S.T. & Riede, F. (2021). Design Space Constraints and the Cultural Taxonomy of European Final Palaeolithic Large Tanged Points: A Comparison of Typological, Landmark-Based and Whole-Outline Geometric Morphometric Approaches. J Paleo Arch 4, 27 (2021).

McCool, W. C., Codding, B. F., Vernon, K. B., Wilson, K. M., Yaworsky, P. M., Marwan, N., & Kennett, D. J. (2022). Climate change–induced population pressure drives high rates of lethal violence in the Prehispanic central Andes. _Proceedings of the National Academy of Sciences_, 119(17), e2117556119. https://doi.org/10.1073/pnas.2117556119

McLaughlin, T. Rowan, Gómez-Puche Magdalena, Cascalheira João, Bicho Nuno and Fernández-López de Pablo Javier (2021). Late Glacial and Early Holocene human demographic responses to climatic and environmental change in Atlantic Iberia _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190724

McLaughlin, T.R. (2018). On Applications of Space–Time Modelling with Open-Source 14C Age Calibration. _Journal of Archaeological Method and Theory_

McLean, A., & Rubio-Campillo, X. (2022). Beyond Least Cost Paths: Circuit theory, maritime mobility and patterns of urbanism in the Roman Adriatic. _Journal of Archaeological Science_, 138, 105534. https://doi.org/10.1016/j.jas.2021.105534

McMillan, R., Waber, N., Ritchie, M., & Frahm, E. (2022). Introducing SourceXplorer, an open-source statistical tool for guided lithic sourcing. _Journal of Archaeological Science_, 144, 105626. https://doi.org/10.1016/j.jas.2022.105626

McPherron, Shannon P., Will Archer, Erik R. Otárola-Castillo, Melissa G. Torquato, and Trevor L. Keevil (2021). Machine Learning, Bootstrapping, Null Models, and Why We Are Still Not 100% Sure Which Bone Surface Modifications Were Made by Crocodiles. _Journal of Human Evolution_ 103071.

McPherron, S. P., Abdolahzadeh, A., Archer, W., Chan, A., Djakovic, I., Dogandžić, T., ... & Reeves, J. (2020). Introducing platform surface interior angle (PSIA) and its role in flake formation, size and shape. Plos one, 15(11), e0241714.

McPherron SP (2018). Additional statistical and graphical methods for analyzing site formation
esses using artifact orientations. _PLOS ONE_ 13(1): e0190195.

Milks, A., Hoggard, C. & Pope, M. (2023). Reassessing the Interpretative Potential of Ethnographic Collections for Early Hunting Technologies. _Journal of Archaeological Method and Theory_ https://doi.org/10.1007/s10816-023-09635-4

Miller, J.M., Wang, Y.V. (2021). Ostrich eggshell beads reveal 50,000-year-old social network in Africa. _Nature_ https://doi.org/10.1038/s41586-021-04227-2

Moclán, A., Cobo-Sánchez, L., Domínguez-Rodrigo, M. (2023). Spatial analysis of an Early Middle Palaeolithic kill/butchering site: the case of the Cuesta de la Bajada (Teruel, Spain). _Archaeological and Anthropological Sciences_ 15, 91 https://doi.org/10.1007/s12520-023-01792-7

Motes-Rodrigo A, McPherron SP, Archer W, Hernandez-Aguilar RA, Tennie C (2022). Experimental investigation of orangutans’ lithic percussive and sharp stone tool behaviours. PLoS ONE 17(2): e0263343. https://doi.org/10.1371/journal.pone.0263343

Nakagawa, T., Kohei Tamura, Yuji Yamaguchi, Naoko Matsumoto, Takehiko Matsugi, Hisashi Nakao, (2021). Population pressure and prehistoric violence in the Yayoi period of Japan, Journal of Archaeological Science, Volume 132, 2021, 105420, https://doi.org/10.1016/j.jas.2021.105420 https://github.com/tmr-kohei/nakagawa2021

Nakoinz, O., D. Knitter (2016). _Modelling Human Behaviour in Landscapes. Basic Concepts and Modelling Elements_. Quantitative Archaeology and Archaeological Modelling 1. Springer, New York. ,

Negre, J., Muñoz, F., & Barceló, J. A. (2017). A Cost-Based Ripley’s K Function to Assess Social Strategies in Settlement Patterning. _Journal of Archaeological Method and Theory_, 1-18.

Negre, J., Muñoz, F., Lancelotti, C., (2016). Geostatistical modelling of chemical residues on archaeological floors in the presence of barriers, _Journal of Archaeological Science_ 70, 91-101. https://github.com/famuvie/ArchaeologicalFloors

Nishiaki, Y., Tamura, K., Suzuki, M., Nakamura, M., Kato, S., Nakagawa, K., Takakura, J., Yamaoka, T., Noguchi, A., Kondo, Y., & Kobayashi, Y. (2021). Spatiotemporal variability in lithic technology of Middle-to-Upper Paleolithic Asia: A new dataset and its statistical analyses. _Quaternary International_. https://doi.org/10.1016/j.quaint.2021.03.022

Nørtoft, M., (2022). A New Framework for Quantifying Prehistoric Grave Wealth. _Journal of Computer Applications in Archaeology_, 5(1), pp.123–139. http://doi.org/10.5334/jcaa.86

O’Driscoll, C. A., & Mackay, A. (2023). Middle Stone Age technology from MIS 6 and MIS 5 at Klipfonteinrand 1, South Africa. _Quaternary Science Reviews_, 318, 108289. https://doi.org/10.1016/j.quascirev.2023.108289

Ordonez, A., Riede, F. (2022). Changes in limiting factors for forager population dynamics in Europe across the last glacial-interglacial transition. _Nature Communications_ 13, 5140 https://doi.org/10.1038/s41467-022-32750-x

Otárola-Castillo, E., Torquato, M., Wolfhagen, J., Hill, M., & Buck, C. (2022). Beyond Chronology, Using Bayesian Inference to Evaluate Hypotheses in Archaeology. _Advances in Archaeological Practice_, 1-17. https://doi.org/10.1017/aap.2022.10

Orton, D., Gaastra, J., & Vander Linden, M. (2016). Between the Danube and the Deep Blue Sea: Zooarchaeological Meta-Analysis Reveals Variability in the Spread and Development of Neolithic Farming across the Western Balkans. Open Quaternary, 2, 6. DOI: data & code:

Pardo-Gordó, S., Aubán, J. B., Jiménez-Puerto, J., Armero, C., & García-Donato, G. (2022). The chronology of archaeological assemblages based on an automatic Bayesian procedure: Eastern Iberia as study case. _Journal of Archaeological Science_, 139(105555), 105555. https://doi.org/10.1016/j.jas.2022.105555

Paixão, E., Marreiros, J., Dubreuil, L., Gneisinger, W., Carver, G., Prévost, M., & Zaidner, Y. (2021). The Middle Paleolithic ground stones tools of Nesher Ramla unit V (Southern Levant): A multi-scale use-wear approach for assessing the assemblage functional variability. Quaternary International. https://doi.org/10.1016/j.quaint.2021.06.009

Pajdla, P., (2023). Spatial Patterns and Grave Goods Differences at the Cemetery of Vedrovice (Czech Republic): A Resampling Approach to Identity Markers in the Early Neolithic. _Journal of Computer Applications in Archaeology_, 6(1), pp.1–15. http://doi.org/10.5334/jcaa.85

Palmisano, A. (2017). Confronting scales of settlement hierarchy in state-level societies: Upper Mesopotamia and Central Anatolia in the Middle Bronze Age. _Journal of Archaeological Science: Reports_, 14, 220-240.

Palmisano, A., Bevan, A., & Shennan, S. (2017). Comparing archaeological proxies for long-term population patterns: An example from central Italy. _Journal of Archaeological Science_, 87, 59-72.

Palmisano, A., Lawrence, D., de Gruchy, M. W., Bevan, A., & Shennan, S. (2021). Holocene regional population dynamics and climatic trends in the Near East: A first comparison using archaeo-demographic proxies. Quaternary Science Reviews, 252, 106739.

Palmisano, A., Bevan, A., Kabelindde, A. et al. (2021). Long-Term Demographic Trends in Prehistoric Italy: Climate Impacts and Regionalised Socio-Ecological Trajectories. _Journal of World Prehistory_ https://doi.org/10.1007/s10963-021-09159-3

Pargeter, J., Brooks, A., Douze, K., Eren, M., Groucutt, H., McNeil, J., Leplongeon, A. (2023). Replicability in Lithic Analysis. _American Antiquity_, 1-24. https://doi.org/10.1017/aaq.2023.4

Pargeter, J., Liu, C., Kilgore, M. B., Majoe, A., & Stout, D. (2022). Testing the Effect of Learning Conditions and Individual Motor/Cognitive Differences on Knapping Skill Acquisition. _Journal of Archaeological Method and Theory_. https://doi.org/10.1007/s10816-022-09592-4

Park, G., Wang, L., & Marwick, B. (2022). How do archaeologists write about racism? Computational text analysis of 41 years of Society for American Archaeology annual meeting abstracts. _Antiquity_, 1-14. doi:10.15184/aqy.2021.181

Park, G. & B. Marwick (2022). How did the introduction of stemmed points affect mobility and site occupation during the late Pleistocene in Korea? _Quaternary Science Reviews_, 277, 107312.

Parkinson, E.W., McLaughlin, T.R., Esposito, C. et al. (2021). Radiocarbon Dated Trends and Central Mediterranean Prehistory. _J World Prehist_. https://doi.org/10.1007/s10963-021-09158-4

Pargeter, J., Chen, C., Buchanan, B., Fisch, M., Bebber, M., & Eren, M. I. (2022). Stone tool backing and adhesion in hunting weaponry: First results of an experimental program. _Journal of Archaeological Science: Reports_, 45, 103639. https://doi.org/10.1016/j.jasrep.2022.103639

Pargeter, Justin, Paloma de la Peña, and Metin I. Eren. (2018). “Assessing Raw Material’s Role in Bipolar and Freehand Miniaturized Flake Shape, Technological Structure, and Fragmentation Rates.” Archaeological and Anthropological Sciences, May, 1–15. data & code:

Pargeter, J., Khreisheh, N., & Stout, D. (2019). Understanding stone tool-making skill acquisition: Experimental methods and evolutionary implications. _Journal of Human Evolution_, 133, 146-166.

Pedergnana, A., Calandra, I., Bob, K., Gneisinger, W., Paixão, E., Schunk, L., Hildebrandt, A., & Marreiros, J. (2020). Evaluating the microscopic effect of brushing stone tools as a cleaning procedure. Quaternary International, 569–570, 263–276. https://doi.org/10.1016/j.quaint.2020.06.031

Pedergnana, A., Calandra, I., Evans, A. A., Bob, K., Hildebrandt, A., & Ollé, A. (2020). Polish is quantitatively different on quartzite flakes used on different worked materials. PLOS ONE, 15(12), e0243295. https://doi.org/10.1371/journal.pone.0243295

Pedersen, Jesper B., Martin E. Poulsen and Felix Riede (2022). Jels 3, a New Late Palaeolithic Open-Air Site in Denmark, Sheds Light on the Pioneer Colonization of Northern Europe, _Journal of Field Archaeology_ https://doi.org/10.1080/00934690.2022.2086346

Pederzani, S., Britton, K., Jones, J. R., Pérez, L. A., Geiling, J. M., & Marín-Arroyo, A. B. (2023). Late Pleistocene Neanderthal exploitation of stable and mosaic ecosystems in northern Iberia shown by multi-isotope evidence. _Quaternary Research_, 1-25.

Pederzani, Sarah, Kate Britton, Vera Aldeias, et al. (2021). Subarctic Climate for the Earliest Homo Sapiens in Europe. _Science Advances_ 7(39).

Pederzani, S., Aldeias, V., Dibble, H.L. et al. (2021). Reconstructing Late Pleistocene paleoclimate at the scale of human behavior: an example from the Neandertal occupation of La Ferrassie (France). _Scientific Reports_ 11, 1419 https://doi.org/10.1038/s41598-020-80777-1

Peeples, M. A. and R. J. Bischoff (2023). Archaeological networks, community detection, and critical scales of interaction in the U.S. Southwest/Mexican Northwest, _Journal of Anthropological Archaeology_, Volume 70, 2023, 101511, https://doi.org/10.1016/j.jaa.2023.101511

Pereira D, Manen C, Rigaud S (2023). The shaping of social and symbolic capital during the transition to farming in the Western Mediterranean: Archaeological network analyses of pottery decorations and personal ornaments. _PLOS ONE_ 18(11): e0294111. https://doi.org/10.1371/journal.pone.0294111

Perri et al (2019). Dietary variation among indigenous Nicaraguan horticulturalists and their dogs: An ethnoarchaeological application of the Canine Surrogacy Approach _Journal of Anthropological Archaeology_ Volume 55,

Pestle WJ, Hubbell C, Hubbe M (2021). (DIGSS) Determination of Intervals using Georeferenced Survey Simulation: An R package for subsurface survey. _PLoS ONE_ 16(9): e0257386. doi:10.1371/journal.pone.0257386

Phillips, D., Wearing, H., & Clark, J. (2018). VILLAGE GROWTH, EMERGING INFECTIOUS DISEASE, AND THE END OF THE NEOLITHIC DEMOGRAPHIC TRANSITION IN THE SOUTHWEST UNITED STATES AND NORTHWEST MEXICO. _American Antiquity_, 83(2), 263-280. doi:10.1017/aaq.2018.3

Phillips, N., Pargeter, J., Low, M. et al. (2018). Open-air preservation of miniaturised lithics: experimental research in the Cederberg Mountains, southern Africa. _Archaeological and Anthropological Sciences_ (2018). https://doi.org/10.1007/s12520-018-0617-7

Plutniak, S. (2022). What Makes the Identity of a Scientific Method? A History of the “Structural and Analytical Typology” in the Growth of Evolutionary and Digital Archaeology in Southwestern Europe (1950s–2000s). _Journal of Paleolithic Archaeology_ 5, 10 https://doi.org/10.1007/s41982-022-00119-7

Plutniak, S., Asftolfo Araujo, Bambang Sugiyanto, Adhi Agus Oktaviana, Jean-Michel Chazine & François-Xavier Ricaut (2022). Mainland-coastal interactions in East Borneo: Inter-site comparison and Bayesian chronological models of two Late Pleistocene–Holocene sequences (Liang Abu and Kimanis rock shelters), _The Journal of Island and Coastal Archaeology_, http://doi.org/10.1080/15564894.2022.2108947

Plutniak, Sébastien (2021). The Strength of Parthood Ties. Modelling Spatial Units and Fragmented Objects with the TSAR Method — Topological Study of Archaeological Refitting. _Journal of Archaeological Science_ 136: 105501.

Pollard, D. (2021). All equal in the presence of death? A quantitative analysis of the Early Iron Age cemeteries of Knossos, Crete, Journal of Anthropological Archaeology, Volume 63, 2021, 101320,

Pop, CM, Wilson, L, Browne, CL. (2022). Evaluating landscape knowledge and lithic resource selection at the French Middle Paleolithic site of the Bau de l'Aubesier. _Journal of Human Evolution_. 2022 Mar 23;166:103152. doi: 10.1016/j.jhevol.20

Porčić, Marko, Blagojević Tamara, Pendić Jugoslav and Stefanović Sofija (2021). The Neolithic Demographic Transition in the Central Balkans: population dynamics reconstruction based on new radiocarbon evidence _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190712

Porčić, M., Blagojević, T., Pendić, J., & Stefanović, S. (2020). The timing and tempo of the Neolithic expansion across the Central Balkans in the light of the new radiocarbon evidence. _Journal of Archaeological Science: Reports_, 33, 102528.

Porčić, M., Nikolić, M., (2016). The Approximate Bayesian Computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. _AArchaeological and Anthropological Sciences_ 8, 169–186. https://doi.org/10.1007/s12520-014-0223-2

Potì, A., Kehl, M., Broich, M., Carrión Marco, Y., Hutterer, R., Jentke, T., Linstädter, J., López-Sáez, J.A., Mikdad, A., Morales, J., Pérez-Díaz, S., Portillo, M., Schmid, C., Vidal-Matutano, P., Weniger, G.-C., (2019). Human occupation and environmental change in the western Maghreb during the Last Glacial Maximum (LGM) and the Late Glacial. New evidence from the Iberomaurusian site Ifri El Baroud (northeast Morocco). _Quaternary Science Reviews_ 220, 87–110. https://doi.org/10.1016/j.quascirev.2019.07.013

Pozo, J. M., Trentacoste, A., Nieto-Espinet, A., Guimarães, S., & Valenzuela-Lamas, S. (2022). zoolog R package: Zooarchaeological analysis with log-ratios. Quaternary International. https://doi.org/10.1016/j.quaint.2022.11.006

Prates, L., Perez, S.I. (2021). Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nature Communications 12, 2175 https://doi.org/10.1038/s41467-021-22506-4

Prentiss, A.M., Edinborough, K., Crema, E. R., Kuijt, I., Goodale, N., Ryan, E., et al. (2022). Divergent population dynamics in the middle to late Holocene lower Fraser valley and mid-Fraser canyon, British Columbia. Journal of Archaeological Science: Reports, 44, 103512. https://doi.org/10.1016/j.jasrep.2022.103512

Price, Michael Holton, José M. Capriles, Julie A. Hoggarth, et al. (2021). End-to-End Bayesian Analysis for Summarizing Sets of Radiocarbon Dates. _Journal of Archaeological Science_ 135: 105473. https://doi.org/10.1016/j.jas.2021.105473

Price, M. D., & Wolfhagen, J. (2024). Wool they, won’t they: Zooarchaeological perspectives on the political and subsistence economies of wool in northern Mesopotamia. _Journal of Anthropological Archaeology_, 74, 101590. https://doi.org/10.1016/j.jaa.2024.101590

Price, M. D., Wolfhagen, J., and Otárola-Castillo, E. (2016). Confidence Intervals in the Analysis of Mortality and Survivorship Curves in Zooarchaeology. _American Antiquity_ 81(1): 157-73.

Proffitt, T., Reeves, J. S., Braun, D. R., Malaivijitnond, S., & Luncz, L. V. (2023). Wild macaques challenge the origin of intentional tool production. Science Advances, 9(10), eade8159. https://doi.org/10.1126/sciadv.ade8159

Pryce, T., Carrignon, S., Cadet, M., Oo, K., Oo, S., Win, T., Aye, A., Pradier, B., Bellina, B., Le Meur, C., Petchey, P. , Radivojević, M. (2023). A Partial Prehistory of the Southwest Silk Road: Archaeometallurgical Networks along the Sub-Himalayan Corridor. _Cambridge Archaeological Journal_, 1-40. doi: [Github](https://github.com/simoncarrignon/bronze-age-ssr)

Rabuñal, J.R., Gómez-Puche, M., Polo-Díaz, A. et al. (2023). Unraveling Early Holocene occupation patterns at El Arenal de la Virgen (Alicante, Spain) open-air site: an integrated palimpsest analysis. _Archaeolological and Anthropological Sciences_ 15, 108 https://doi.org/10.1007/s12520-023-01805-5

Radinovic, M., & Kajtez, I. (2021). Outlining the knapping techniques: Assessment of the shape and regularity of prismatic blades using elliptic Fourier analysis. _Journal of Archaeological Science: Reports_, 38, 103079. https://doi.org/10.1016/j.jasrep.2021.103079

Reese, K. M. (2021). Deep learning artificial neural networks for non-destructive archaeological site dating, Journal of Archaeological Science, Volume 132, 2021,105413,

Reese, K. M. (2020). Check dam agriculture on the mesa verde cuesta. Journal of Archaeological Science: Reports, 31, 102372.

Reese, K., Glowacki, D., & Kohler, T. (2019). Dynamic Communities on the Mesa Verde Cuesta. American Antiquity, 84(4), 728-747. doi:10.1017/aaq.2019.74

Reeves, J. S., McPherron, S. P., Aldeias, V., Dibble, H. L., Goldberg, P., Sandgathe, D., & Turq, A. (2019). Measuring spatial structure in time-averaged deposits insights from Roc de Marsal, France. Archaeological and Anthropological Sciences.

Reidsma, F. H., Sifogeorgaki, I., Dinckal, A., Huisman, H., Sier, M. J., van Os, B., & Dusseldorp, G. L. (2021). Making the Invisible Stratigraphy Visible: A Grid-Based, Multi-Proxy Geoarchaeological Study of Umhlatuzana Rockshelter, South Africa. _Frontiers in Earth Science_, 9. https://www.frontiersin.org/article/10.3389/feart.2021.664105

Reynolds, N., & Green, C. (2019). Spatiotemporal modelling of radiocarbon dates using linear regression does not indicate a vector of demic dispersal associated with the earliest Gravettian assemblages in Europe. Journal of Archaeological Science: Reports, 27, 101958. https://doi.org/10.1016/j.jasrep.2019.101958

Reynolds, N., Germonpré, M., Bessudnov, A. A., & Sablin, M. V. (2019). The Late Gravettian Site of Kostënki 21 Layer III, Russia: a Chronocultural Reassessment Based on a New Interpretation of the Significance of Intra-site Spatial Patterning. _Journal of Paleolithic Archaeology_.

Režek, Ž., Dibble, H.L., McPherron, S.P., Braun, D.R., Lin, S.C., (2018). Two million years of flaking stone and the evolutionary efficiency of stone tool technology. _Nature Ecology & Evolution_ 1.,

Riede, F., & Lombard, M. (2024). Hunting with poisoned arrows during the Terminal Pleistocene in Northern Europe? A tip cross-sectional area assessment and list of potential arrow poison ingredients. _Journal of Archaeological Science: Reports_, 59, 104757. https://doi.org/10.1016/j.jasrep.2024.104757

Riede, F., Lew-Levy, S., Johannsen, N. N., Lavi, N., & Andersen, M. M. (2022). Toys as Teachers: A Cross-Cultural Analysis of Object Use and Enskillment in Hunter–Gatherer Societies. _Journal of Archaeological Method and Theory_. https://doi.org/10.1007/s10816-022-09593-3

Riede, F., Araujo, A., & Marwick, B. (2022). Robert C. Dunnell's Systematics in prehistory at 50. _Evolutionary Human Sciences_, 4, E16. doi:10.1017/ehs.2022.18

Riede, F. C. Hoggard & S. Shennan (2019). Reconciling material cultures in archaeology with genetic data requires robust cultural evolutionary taxonomies. _Palgrave Communications_ 5, Article number: 55 (2019) https://www.nature.com/articles/s41599-019-0260-7#Fn1

Riel-Salvatore J, Lythe A, Albornoz AU (2021). New insights into the spatial organization, stratigraphy and human occupations of the Aceramic Neolithic at Ganj Dareh, Iran. _PLOS ONE_ 16(8): e0251318. https://doi.org/10.1371/journal.pone.0251318

Riris, P., Silva, F., Crema, E., Palmisano, A., Robinson, E., Siegel, P. E., French, J. C., Jørgensen, E. K., Maezumi, S. Y., Solheim, S., Bates, J., Davies, B., Oh, Y., & Ren, X. (2024). Frequent disturbances enhanced the resilience of past human populations. _Nature_, 629(8013), 837–842.

Riris, P. and de Souza JG (2021). Formal Tests for Resistance-Resilience in Archaeological Time Series. _Frontiers in Ecology and Evolution_ 9:740629. http://doi.org/10.3389/fevo.2021.740629

Riris, P., Silva, F. (2021). Resolution and the detection of cultural dispersals: development and application of spatiotemporal methods in Lowland South America. _Humanities and Social Sciences Communications_ 8, 36 https://doi.org/10.1057/s41599-021-00717-w

Riris, P. (2020). Spatial structure among the geometric earthworks of western Amazonia (Acre, Brazil). _Journal of Anthropological Archaeology_, 59, 101177.

Riris, P., & Arroyo-Kalin, M. (2019). Widespread population decline in South America correlates with mid-Holocene climate change. _Scientific reports_, 9(1), 6850.

Riris, P. (2018). Dates as Data Revisited: A Statistical Examination of the Peruvian Preceramic Radiocarbon Record. _Journal of Archaeological Science_ 97 (September 1, 2018): 67–76.

Roalkvam, I. (2023). A simulation-based assessment of the relation between Stone age sites and relative sea-level change along the Norwegian Skagerrak coast. _Quaternary Science Reviews_, 299, 107880. https://doi.org/10.1016/j.quascirev.2022.107880

Roalkvam, I. (2023). shoredate: An R package for shoreline dating coastal Stone Age sites. _Journal of Open Source Software_, 8(85), 5337. https://doi.org/10.21105/joss.05337

Roalkvam, I., & Solheim, S. (2023). Comparing summed probability distributions of shoreline and radiocarbon dates from the Mesolithic Skagerrak coast of Norway (preprint). _SocArXiv_. https://doi.org/10.31235/osf.io/2f8ph

Robinson, Erick, Bocinsky R. Kyle, Bird Darcy, Freeman Jacob and Kelly Robert L. (2021). Dendrochronological dates confirm a Late Prehistoric population decline in the American Southwest derived from radiocarbon dates _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190718

Robinson, J.R. (2021). Investigating Isotopic Niche Space: Using rKIN for Stable Isotope Studies in Archaeology. _Journal of Archaeological Method and Theory_

Rodríguez, J., Willmes, C., Sommer, C., & Mateos, A. (2022). Sustainable human population density in Western Europe between 560.000 and 360.000 years ago. Scientific Reports, 12(1), 6907. https://doi.org/10.1038/s41598-022-10642-w

Roscoe, Paul, Sandweiss Daniel H. and Robinson Erick (2021). Population density and size facilitate interactive capacity and the rise of the state _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190725 http://doi.org/10.1098/rstb.2019.0725

Ruebens, K., Smith, G.M., Fewlass, H., Sinet-Mathiot, V., Hublin, J.-J. and Welker, F. (2023). Neanderthal subsistence, taphonomy and chronology at Salzgitter-Lebenstedt (Germany): a multifaceted analysis of morphologically unidentifiable bone. Journal of Quaternary Science. https://doi.org/10.1002/jqs.3499

Rubio-Campillo, X., Montanier,, J.M., Rull, G., Bermúdez Lorenzo, J.M., Moros Díaz, J., Pérez González, J., Remesal Rodríguez, J. (2018). The ecology of Roman trade. Reconstructing provincial connectivity with similarity measures, Journal of Archaeological Science, 92, pp. 37-47. doi:10.1016/j.jas.2018.02.010

Rubio-Campillo, X., Coto-Sarmiento, M., Pérez-Gonzalez, J. and Remesal Rodríguez, J. (2017). Bayesian analysis and free market trade within the Roman Empire, Antiquity, 91(359), pp. 1241–1252. doi:10.15184/aqy.2017.131

Sanger, M.C., Bourcy, S., Ogden, Q.M. et al. (2020). Post-marital Residence Patterns in the Late Archaic Coastal Southeast USA: Similarities in Stone Tools Revealed by Geometric Morphometrics. _Journal of Archaeological Method and Theory_ 27, 327–359

Samawi, O., Hallinan, E. (2024). More Than Surface Finds: Nubian Levallois Core Metric Variability and Site Distribution Across Africa and Southwest Asia. _Journal of Paleolithic Archaeology_ 7, 26 https://doi.org/10.1007/s41982-024-00192-0

Schauer, Peter, Andrew Bevan, Stephen Shennan, Kevan Edinborough, Tim Kerig, Mike Parker Pearson (2020). British Neolithic axe distributions and their implications. _Journal of Archaeological Method and Theory_ 27, 836–859.

Schmid, C. (2019). Evaluating Cultural Transmission in Bronze Age burial rites of Central, Northern and Northwestern Europe using radiocarbon data. _Adaptive Behavior_, 1059712319860842.

Schmidt, S. C. (2020). Siedlungsgrößen und Abstände zwischen Siedlungsstandorten – eine geostatistische Analyse von Transektdaten, _Praehistorische Zeitschrift_, 94(2), 499-528. doi: https://doi.org/10.1515/pz-2019-0015

Schmidt, Isabell, Hilpert Johanna, Kretschmer Inga, Peters Robin, Broich Manuel, Schiesberg Sara, Vogels Oliver, Wendt Karl Peter, Zimmermann Andreas and Maier Andreas (2021). Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190714

Schmidt, S.C. and Marwick, B., (2020). Tool-Driven Revolutions in Archaeological Science. Journal of Computer Applications in Archaeology, 3(1), pp.18–32. DOI:

Schotsmans, E.M.J., Busacca, G., Lin, S.C. et al. (2022). New insights on commemoration of the dead through mortuary and architectural use of pigments at Neolithic Çatalhöyük, Turkey. Scientific Reports 12, 4055. https://doi.org/10.1038/s41598-022-07284-3

Selden, R. Z., & Dockall, J. E. (2023). Perdiz arrow points from Caddo burial contexts aid in defining discrete behavioral regions. _Southeastern Archaeology_, 42(2), 122–135. https://doi.org/10.1080/0734578X.2023.2182260

Selden Jr., R. Z., Dockall, J. E., Bousman, C. B., & Perttula, T. K. (2021). Shape as a function of time + raw material + burial context? An exploratory analysis of Perdiz arrow points from the ancestral Caddo area of the American Southeast. _Journal of Archaeological Science: Reports_, 37, 102916. https://doi.org/10.1016/j.jasrep.2021.102916

Schoville, Precious Chiwara-Maenzanise, Erik Otárola-Castillo & Jayne Wilkins (2023). Function, Style, and Standardization: Is the Proximal or Distal End of a Middle Stone Age Point More Variable?, _Lithic Technology_, http://doi.org/10.1080/01977261.2023.2233167

Schoville, B.J., Brown, K.S. & Wilkins, J. (2022). A Lithic Provisioning Model as a Proxy for Landscape Mobility in the Southern and Middle Kalahari. J Archaeol Method Theory 29, 162–187 https://doi.org/10.1007/s10816-021-09507-9

Selden, R. Z., Dockall, J. E., & Dubied, M. (2020). A quantitative assessment of intraspecific morphological variation in Gahagan bifaces from the southern Caddo area and central Texas. Southeastern Archaeology, 39(2), pp.125–145. DOI: data & code:

Shennan, SJ, Enrico R. Crema, Tim Kerig, (2014). Isolation-by-distance, homophily, and 'core' vs. 'package' cultural evolution models in Neolithic Europe, _Evolution and Human Behavior_, Available online 2 October 2014, [http://dx.doi.org/10.1016/j.evolhumbehav.2014.09.006](http://www.sciencedirect.com/science/article/pii/S1090513814001251)

Shott, M., & Otárola-Castillo, E. (2022). Parts and Wholes: Reduction Allometry and Modularity in Experimental Folsom Points. _American Antiquity_, 87(1), 80-99. doi:10.1017/aaq.2021.62

Silva, F., (2020). A probabilistic framework and significance test for the analysis of structural orientations in skyscape archaeology. Journal of Archaeological Science 118, 105138. https://doi.org/10.1016/j.jas.2020.105138

Sinensky, R. J., and A. Farahani. (2018). DIVERSITY-DISTURBANCE RELATIONSHIPS IN THE LATE ARCHAIC SOUTHWEST: IMPLICATIONS FOR FARMER-FORAGER FOODWAYS American Antiquity 83 (2): 364–364.

Sinensky, R., Schachner, G., Wilshusen, R., & Damiata, B. (2022). Volcanic climate forcing, extreme cold and the Neolithic Transition in the northern US Southwest. _Antiquity_, 96(385), 123-141. doi:10.15184/aqy.2021.19

Smith, G.M., Ruebens, K., Zavala, E.I. et al. (2024). The ecology, subsistence and diet of 45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany. _Nature Ecology and Evolution_ https://doi.org/10.1038/s41559-023-02303-6

Smith, G. R. Spasov, N. L. Martisius, V. Sinet-Mathiot, V. Aldeias, et al. (2021). Subsistence behavior during the Initial Upper Paleolithic in Europe: Site use, dietary practice, and carnivore exploitation at Bacho Kiro Cave (Bulgaria), Journal of Human Evolution, Volume 161, 2021, 103074, https://doi.org/10.1016/j.jhevol.2021.103074

Smith, G.M., Noack, E.S., Behrens, N.M. et al. (2020). When Lithics Hit Bones: Evaluating the Potential of a Multifaceted Experimental Protocol to Illuminate Middle Palaeolithic Weapon Technology. _Journal of Paleolithic Archaeology_ 3, 126–156 https://doi.org/10.1007/s41982-020-00053-6

Snitker, G., Moser, J. D., Southerlin, B., & Stewart, C. (2022). Detecting historic tar kilns and tar production sites using high-resolution, aerial LiDAR-derived digital elevation models: Introducing the Tar Kiln Feature Detection workflow (TKFD) using open-access R and FIJI software. Journal of Archaeological Science: Reports, 41, 103340. https://doi.org/10.1016/j.jasrep.2022.103340

Sommer, C., Kandel, A. W., & Hochschild, V. (2022). The use of prehistoric ‘big data’ for mapping early human cultural networks. _Journal of Maps_, 1–12. https://doi.org/10.1080/17445647.2022.2118628

Souza, J. G. de, Ruiz-Pérez, J., Lancelotti, C., & Madella, M. (2022). Environmental effects on the spread of the Neolithic crop package to South Asia. PLOS ONE, 17(7), e0268482. https://doi.org/10.1371/journal.pone.0268482

Souza, J. G. de, & Riris, P. (2021). Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. Journal of Archaeological Science, 125, 105293. https://doi.org/10.1016/j.jas.2020.105293

Spake, L., Cardoso, H.F.V. (2021). Interpolation of the Maresh diaphyseal length data for use in quantitative analyses of growth. _International Journal of Osteoarchaeology_ 31:232-242.

Stantis, C., Maaranen, N., Kharobi, A., Nowell, G. M., Macpherson, C., Schutkowski, H., & Bourke, S. (2022). Jordanian migration and mobility in the Middle Bronze Age (ca. 2100–1550 BCE) at Pella. International Journal of Osteoarchaeology, 32(2), 339–357. https://doi.org/10.1002/oa.3069

Stantis, C., Kharobi, A., Maaranen, N. et al. (2021). Multi-isotopic study of diet and mobility in the northeastern Nile Delta. Archaeological and Anthropological Sciences 13, 105 (2021). https://doi.org/10.1007/s12520-021-01344-x

Steele, Teresa E., Alex Mackay, Kathryn E. Fitzsimmons, Marina Igreja, Ben Marwick, Jayson Orton, Steve Schwortz, and Mareike C. Stahlschmidt (2016). "Varsche Rivier 003: A Middle and Later Stone Age Site with Still Bay and Howieson's Poort Assemblages in Southern Namaqualand, South Africa" _PaleoAnthropology_ 2016:100-163 , < http://dx.doi.org/10.5281/zenodo.31903>

Stewart, M., Carleton, W.C. and Groucutt, H.S. (2022). Extreme events in biological, societal, and earth sciences: A systematic review of the literature. _Frontiers of Earth Science_ 10:786829. https://doi.org/10.3389/feart.2022.786829

Stewart, M., Carleton, W.C. & Groucutt, H.S. (2021). Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. _Nature communications_ 12, 965 https://doi.org/10.1038/s41467-021-21201-8

Steinmann, L. (2020). Finds from Miletus XXXII. Clay Rings from the Sanctuary of Dionysos in Miletus. _Archäologischer Anzeiger_, 1-49 (§). https://doi.org/10.34780/aa.v0i1.1014

Stoddart, S., Palmisano, A.,Redhouse, D., Barker, G., di Paola, G., Motta, L., Rasmussen, T., Samuels, T. & Witcher, R. (2020). Patterns of EtruscanUrbanism. Front. Digit. Humanit. 7:1.

Strand, L.M., Leggett, S., Skar, B., (2022). Multi-Isotope Variation Reveals Social Complexity in Viking Age Norway, _ISCIENCE_ https://doi.org/10.1016/j.isci.2022.105225

Strawhacker, C., Snitker, G., Peeples, M. A., Kinzig, A. P., Kintigh, K. W., Bocinsky, K., ... & Sandor, J. A. (2020). A Landscape Perspective on Climate-Driven Risks to Food Security: Exploring the Relationship between Climate and Social Transformation in the Prehispanic US Southwest. _American Antiquity_, 85(3), 427-451.

Stroud, E., Jones, G., Charles, M. & Bogaard, A. (2024). Sieving the Weeds from the Grains: An R Based Package for Classifying Archaeobotanical Samples of Cereals and Pulses According to Crop Processing Stages. _Vegetation History and Archaeobotany_.

Suárez, R., & Cardillo, M. (2019). Life history or stylistic variation? A geometric morphometric method for evaluation of Fishtail point variability. Journal of Archaeological Science: Reports, 27, 101997.

Suryanarayan, A., Cubas, M., Craig, O. E., Heron, C. P., Shinde, V. S., Singh, R. N., O'Connell, T. C., Petrie, C. A. (2021). Lipid residues in pottery from the Indus Civilisation in northwest India. _Journal of Archaeological Science_125.

Tallavaara, Miikka and Jørgensen Erlend Kirkeng (2021). Why are population growth rate estimates of past and present hunter–gatherers so different? _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190708 http://doi.org/10.1098/rstb.2019.0708

Tenzer, M. (2022). Tweets in the Peak: Twitter Analysis - the impact of Covid-19 on cultural landscapes, _Internet Archaeology_ 59. https://doi.org/10.11141/ia.59.6

Timbrell, L., Peña, P. de la, Way, A., Hoggard, C., Backwell, L., Francesco d’Errico, Wadley, L., & Grove, M. (2022). Technological and geometric morphometric analysis of ‘post-Howiesons Poort points’ from Border Cave, KwaZulu-Natal, South Africa. _Quaternary Science Reviews_, 297, 107813. https://doi.org/10.1016/j.quascirev.2022.107813

Timbrell, L., Scott, C., Habte, B. et al. (2022). Testing inter-observer error under a collaborative research framework for studying lithic shape variability. _Archaeological Anthropological Science_ 14, 209 https://doi.org/10.1007/s12520-022-01676-2

Timbrell, L., Grove, M., Manica, A. et al. A spatiotemporally explicit paleoenvironmental framework for the Middle Stone Age of eastern Africa. _Scientific Reports_ 12, 3689 (2022). https://doi.org/10.1038/s41598-022-07742-y

Timpson, Adrian, Barberena Ramiro, Thomas Mark G., Méndez César and Manning Katie (2021). Directly modelling population dynamics in the South American Arid Diagonal using 14C dates _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620190723

Trentacoste, A., Nieto-Espinet, A., Guimarães Chiarelli, S., & Valenzuela-Lamas, S. (2022). Systems change: Investigating climatic and environmental impacts on livestock production in lowland Italy between the Bronze Age and Late Antiquity (c. 1700 BC – AD 700). _Quaternary International_. https://doi.org/10.1016/j.quaint.2022.11.005

Tsirintoulaki, K., Matzig, D. N., & Riede, F. (2023). A 2D Geometric Morphometric Assessment of Chrono-Cultural Trends in Osseous Barbed Points of the European Final Palaeolithic and Early Mesolithic. Open Archaeology, 9(1). https://doi.org/10.1515/opar-2022-0276

Ullah, Isaac I. T., Ian Kuijt, and Jacob Freeman. (2015). “Toward a Theory of Punctuated Subsistence Change.” _Proceedings of the National Academy of Sciences_ 112 (31): 9579–84. .

Utting, B. (2022). Geochemical fingerprinting of Pleistocene stone tools from the Tràng An Landscape Complex, Ninh Bình Province, Vietnam. _PLoS ONE_ 17(6): e0269658. https://doi.org/10.1371/journal.pone.0269658

Vander Linden, Marc and Silva Fabio (2021). Dispersals as demographic processes: testing and describing the spread of the Neolithic in the Balkans _Philosophical Transactions of the Royal Society B: Biological Sciences_ B37620200231 http://doi.org/10.1098/rstb.2020.0231

Verhagen, P. (2023). Centrality on the periphery: an analysis of rural settlement hierarchy in the Dutch part of the Roman limes. _Archaeological and Anthropological Sciences_ 15, 45 https://doi.org/10.1007/s12520-023-01745-0

Vidal-Cordasco, M., Ocio, D., Hickler, T. et al. (2022). Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia. _Nature Ecology and Evolution_ (2022). https://doi.org/10.1038/s41559-022-01861-5

Vignoles, Anais, William E. Banks, Laurent Klaric, Masa Kageyama, Marlon E. Cobos, Daniel Romero-Alvarez. (2020). Investigating relationships between technological variability and ecology in the Middle Gravettian (ca. 32-28 ka cal. BP) in France. (2020), OSF, ud3hj, ver. 3 peer-reviewed and recommended by PCI Archaeology.

Visentin, D., & Carrer, F. (2017). Evaluating Mesolithic settlement patterns in mountain environments (Dolomites, Eastern Italian Alps): the role of research biases and locational strategies. _Archeologia e calcolatori_ 28(1), 129-154. http://eprints.bice.rm.cnr.it/id/eprint/17240

Visser, RM and Vorst, Y. (2022). Connecting Ships: Using Dendrochronological Network Analysis to Determine the Wood Provenance of Roman-Period River Barges Found in the Lower Rhine Region and Visualise Wood Use Patterns. International Journal of Wood Culture 1(aop): 1–29. https://doi.org/10.1163/27723194-bja10014.

Visser, RM. (2021). On the similarity of tree-ring patterns: Assessing the influence of semi-synchronous growth changes on the Gleichläufigkeitskoeffizient for big tree-ring data sets. Archaeometry 63(1): 204–215. DOI: https://doi.org/10.1111/arcm.12600.

Visser, R.M., 2021. Dendrochronological Provenance Patterns. Network Analysis of Tree-Ring Material Reveals Spatial and Economic Relations of Roman Timber in the Continental North-Western Provinces. Journal of Computer Applications in Archaeology 4(1): 230–253. DOI: http://doi.org/10.5334/jcaa.79

Wang, X., Bocksberger, G., Lautenschläger, T., Finckh, M., Meller, P., O’Malley, G. E., & Oelze, V. M. (2023). A bioavailable strontium isoscape of Angola with implications for the archaeology of the transatlantic slave trade. _Journal of Archaeological Science_, 154, 105775. https://doi.org/10.1016/j.jas.2023.105775

Wang, Li-Ying, and Ben Marwick (2021). A Bayesian Networks Approach to Infer Social Changes from Burials in Northeastern Taiwan during the European Colonization Period. _Journal of Archaeological Science_ 134: 105471.

Wang, L. and Marwick, B. (2020). Standardization of ceramic shape: A case study from the Iron Age pottery from northeastern Taiwan. _Journal of Archaeological Science: Reports_ 33.

Wang, L. and Marwick, B. (2020). Ornaments as indicators of social changes resulting from indirect effects of colonialism in northeastern Taiwan. _Archaeological Research in Asia_.

Wattanapituksakul, A., Shoocongdej, R., & Conrad, C. (2022). Preservation of Mammalian Teeth and Bones Influences Identification of Terminal Pleistocene to Middle Holocene Hunter-Gatherer Subsistence at Ban Rai Rockshelter, Northwest Thailand. _Quaternary_, 5(4), Article 4. https://doi.org/10.3390/quat5040051

Way, A.M., de la Peña, P., de la Peña, E. et al. (2022). Howiesons Poort backed artifacts provide evidence for social connectivity across southern Africa during the Final Pleistocene. Scientific Reports 12, 9 https://doi.org/10.1038/s41598-022-12677-5

Weiss, Marcel. (2020). “The Lichtenberg Keilmesser - It’s All about the Angle.” _PLOS ONE_ 15(10): e0239718.

Weitzel, E. M. (2019). Declining foraging efficiency in the Middle Tennessee River Valley prior to initial domestication. _American Antiquity_, 1-24. https://doi.org/10.1017/aaq.2018.86 https://osf.io/2gub7/

Wilczek, J., Monna, F., Navarro, N., & Chateau-Smith, C. (2021). A computer tool to identify best matches for pottery fragments. Journal of Archaeological Science: Reports, 37, 102891. https://doi.org/10.1016/j.jasrep.2021.102891

Will, M., Rathmann, H. (2025) Exploring the utility of unretouched lithic flakes as markers of cultural change. _Scientific Reports_ 15, 1571 https://doi.org/10.1038/s41598-025-85399-z

Will, M., Bader, G. D., Sommer, C., Cooper, A., & Green, A. (2022). Coastal adaptations on the eastern seaboard of South Africa during the Pleistocene and Holocene? Current evidence and future perspectives from archaeology and marine geology. _Frontiers in Earth Science_, 10, 964423. https://doi.org/10.3389/feart.2022.964423

Wilson, Evan Patrick, Dietrich Stout, Cheng Liu, Megan Beney Kilgore & Justin Pargeter (2023). Skill and Core Uniformity: An Experiment with Oldowan-like Flaking Systems, Lithic Technology, https://doi.org/10.1080/01977261.2023.2178767

Wilson, K.M., McCool, W.C., Brewer, S.C. et al. (2022). Climate and demography drive 7000 years of dietary change in the Central Andes. _Scientific Reports_ 12, 2026 https://doi.org/10.1038/s41598-022-05774-y

Wolfhagen, J. (2023). Estimating the Ontogenetic Age and Sex Composition of Faunal Assemblages with Bayesian Multilevel Mixture Models. _Journal of Archaeological Method and Theory_ https://doi.org/10.1007/s10816-023-09611-y

Wolfhagen, J. (2020). Re-examining the use of the LSI technique in zooarchaeology. _Journal of Archaeological Science_ Volume 123, November 2020, 105254 https://doi.org/10.1016/j.jas.2020.105254 https://osf.io/4k62y/

Wolfhagen, J. and Price, M. D. (2017). A probabilistic model for distinguishing between sheep and goat postcranial remains. _Journal of Archaeological Science: Reports_ 12: 625-31.

Wren, C. D., & Burke, A. (2019). Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PloS one, 14(6), e0217996.

Wren, C. D., Botha, S., De Vynck, J., Janssen, M. A., Hill, K., Shook, E., Marean, C. W. (2019). The foraging potential of the Holocene Cape south coast of South Africa without the Palaeo-Agulhas Plain. _Quaternary Science Reviews_, 105789.

Wyatt-Spratt, S., (2022). After the Revolution: A Review of 3D Modelling as a Tool for Stone Artefact Analysis. _Journal of Computer Applications in Archaeology_, 5(1), pp.215–237. http://doi.org/10.5334/jcaa.103

Yaworsky, P.M., Hussain, S.T. & Riede, F. (2023). Climate-driven habitat shifts of high-ranked prey species structure Late Upper Paleolithic hunting. _Scientific Reports_ 13, 4238 (2023). https://doi.org/10.1038/s41598-023-31085-x

Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C., & Codding, B. F. (2020). Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. _PloS one_, 15(10), e0239424. https://doi.org/10.1371/journal.pone.0239424

Yrarrazaval, S., Cartajena, I., Borrero, L., & Salazar, D. (2023). Identifying non-anthropogenic accumulation in zooarchaeological assemblages using naive Bayesian classifier: A trace-oriented actualistic taphonomic approach in the hyperarid coasts of the Atacama desert. _Quaternary Science Advances_, 100143. https://doi.org/10.1016/j.qsa.2023.100143

## Contributors

[Ben Marwick](https://github.com/benmarwick), Agustin Diez Castillo, Allar Haav, Sebastian Heath, Phil Riris, Tom Brughmans, Lee Drake, Stefano Costa, [Enrico Crema](https://github.com/ercrema), [Domenico Giusti](https://github.com/dncgst), Matt Peeples, Mark Madsen, Daniel Contreras, [Tal Galili](https://github.com/talgalili), [Li-Ying Wang](https://github.com/LiYingWang), [Bjørn Peare Bartholdy](https://github.com/bbartholdy), [Ronald Visser](https://github.com/RonaldVisser), [Moritz Mennenga](https://github.com/MoritzMennenga)