Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bennylope/pygeocodio

:globe_with_meridians: A Python wrapper for the Geocodio geolocation service API
https://github.com/bennylope/pygeocodio

api api-client geocoding geocodio python

Last synced: 5 days ago
JSON representation

:globe_with_meridians: A Python wrapper for the Geocodio geolocation service API

Awesome Lists containing this project

README

        

===========
Py-Geocodio
===========

.. image:: https://badge.fury.io/py/pygeocodio.svg
:target: http://badge.fury.io/py/pygeocodio

.. image:: https://github.com/bennylope/pygeocodio/actions/workflows/tests.yml/badge.svg?branch=master
:target: https://github.com/bennylope/pygeocodio/actions

.. image:: https://img.shields.io/pypi/dm/pygeocodio.svg
:target: https://img.shields.io/pypi/dm/pygeocodio.svg

Python wrapper for `Geocodio geocoding API `_.

Full documentation on `Read the Docs `_.

**If you are upgrading from a version prior to 0.2.0 please see the changelog
in HISTORY.rst. The default coordinate ordering has changed to something a bit
more sensible for most users.**

Geocodio API Features
=====================

* Geocode an individual address
* Batch geocode up to 10,000 addresses at a time
* Parse an address into its identifiable components
* Reverse geocode an individual geographic point
* Batch reverse geocode up to 10,000 points at a time
* Perform operations using the HIPAA API URL

The service is limited to U.S. and Canada addresses for the time being.

Read the complete `Geocodio documentation `_ for
service documentation.

Installation
============

pygeocodio requires `requests` 1.0.0 or greater and will ensure requests is
installed::

pip install pygeocodio

Basic usage
===========

Import the API client and ensure you have a valid API key::

>>> from geocodio import GeocodioClient
>>> client = GeocodioClient(YOUR_API_KEY)

Note that you can pass in a timeout value in seconds (the default is no timeout)::

>>> client = GeocodioClient(YOUR_API_KEY, timeout=15)

Geocoding
---------

Geocoding an individual address::

>>> geocoded_location = client.geocode("42370 Bob Hope Drive, Rancho Mirage CA")
>>> geocoded_location.coords
(33.738987255507, -116.40833849559)

Geocode a set of address components::

>>> geocoded_location = client.geocode(components_data={
"postal_code": "02210",
"country": "US"
})
>>> geocoded_location.coords
(42.347547, -71.040645)

Batch geocoding
---------------

You can also geocode a list of addresses::

>>> geocoded_addresses = client.geocode([
'2 15th St NW, Washington, DC 20024',
'3101 Patterson Ave, Richmond, VA, 23221'
])

Return a list of just the coordinates for the resultant geocoded addresses::

>>> geocoded_addresses.coords
[(38.890083, -76.983822), (37.560446, -77.476008)]
>>> geocoded_addresses[0].coords
(38.890083, -76.983822)

Lookup an address by the queried address::

>>> geocoded_addresses.get('2 15th St NW, Washington, DC 20024').coords
(38.879138, -76.981879))

You can also geocode a list of address component dictionaries::

>>> geocoded_addresses = client.geocode(components_data=[{
'street': '1109 N Highland St',
'city': 'Arlington',
'state': 'VA'
}, {
'city': 'Toronto',
'country': 'CA'
}])

And geocode a keyed mapping of address components::

>>> gecoded_addresses = client.geocode(components_data={
"1": {
"street": "1109 N Highland St",
"city": "Arlington",
"state": "VA"
},
"2": {
"city": "Toronto",
"country": "CA"
}})

And geocode even a keyed mapping of addresses::

>>> geocoded_addresses = client.geocode({
"1": "3101 patterson ave, richmond, va",
"2": "1657 W Broad St, Richmond, VA"
})

Return a list of just the coordinates for the resultant geocoded addresses::

>>> geocoded_addresses.coords
{'1': (37.560454, -77.47601), '2': (37.555176, -77.458273)}

Lookup an address by its key::

>>> geocoded_addresses.get("1").coords
(37.560454, -77.47601)

Address parsing
---------------

And if you just want to parse an individual address into its components::

>>> client.parse('1600 Pennsylvania Ave, Washington DC')
{
"address_components": {
"number": "1600",
"street": "Pennsylvania",
"suffix": "Ave",
"city": "Washington",
"state": "DC"
},
"formatted_address": "1600 Pennsylvania Ave, Washington DC"
}

Reverse geocoding
-----------------

Reverse geocode a point to find a matching address::

>>> location = client.reverse((33.738987, -116.4083))
>>> location.formatted_address
"42370 Bob Hope Dr, Rancho Mirage CA, 92270"

Batch reverse geocoding
-----------------------

And multiple points at a time::

>>> locations = client.reverse([
(33.738987, -116.4083),
(33.738987, -116.4083),
(38.890083, -76.983822)
])

Return the list of formatted addresses::

>>> locations.formatted_addresses
["42370 Bob Hope Dr, Rancho Mirage CA, 92270", "42370 Bob Hope Dr, Rancho Mirage CA, 92270", "2 15th St NW, Washington, DC 20024"]

Access a specific address by the queried point tuple::

>>> locations.get("38.890083,-76.983822").formatted_address
"2 15th St NW, Washington, DC 20024"

Or by the more natural key of the queried point tuple::

>>> locations.get((38.890083, -76.983822)).formatted_address
"2 15th St NW, Washington, DC 20024"

CLI usage
=========

In the works!

Documentation
=============

For complete documentation see `the docs
`_.

License
=======

BSD License