Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bensuperpc/astar

Fast and easy to use standalone header only 2D astar algorithm library in C++20
https://github.com/bensuperpc/astar

astar astar-algorithm astar-pathfinding cpp cpp20 dijkstra dijkstra-algorithm header-only pathfinder pathfinding pathfinding-algorithm template-class

Last synced: 4 days ago
JSON representation

Fast and easy to use standalone header only 2D astar algorithm library in C++20

Awesome Lists containing this project

README

        

# astar

Fast and easy to use standalone header only 2D astar algorithm library in C++20.

I made it for learning how the astar algorithm works, try to make the fastest, tested and configurable as possible for my needs (future games and works).

# How does it work

It is an [astar algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm), the main idea is to find the shortest path between two points in a grid/map.

# Screenshots

![astar](resources/Screenshot_20240213_205401.png)

![astar](resources/Screenshot_20240213_205329.png)

# Features

* [x] Header-only library C++20
* [x] Support 2D map
* [ ] Support 3D map
* [x] Configurable heuristic function and movement cost
* [x] Configurable (diagonal and more) movement
* [x] Debug mode in template argument and lambda function
* [x] Support direct access and not access to the map
* [x] Unit tests and benchmarks
* [ ] Working CI (WIP)

### Heuristic function

You can set the heuristic function to calculate the distance between two points and return the cost.

| Heuristic | C++ Function | Description |
|-----------|--------------|-------------|
| euclidean | AStar::Heuristic::euclidean | Default |
| manhattan | AStar::Heuristic::manhattan | |
| octagonal | AStar::Heuristic::octagonal | |
| chebyshev | AStar::Heuristic::chebyshev | |
| euclideanNoSQR | AStar::Heuristic::euclideanNoSQR | |
| dijkstra | AStar::Heuristic::dijkstra | Always return 0 |

# How to use it

This project is a header-only library and easy to use, just copy the `include/astar` folder in your project and include the `astar/astar.hpp` header or via CMake FetchContent_Declare.

Now you can use the `Astar::Astar` class to find the shortest path between two points in a grid.

```cpp
#include
#include

auto main() -> int {
// Create the template class with optional a type (e.g. uint32_t) and a boolean
// if you want enable debug mode (AStar::AStar)
AStar::AStar pathFinder;

// Define the map size (width, height)
pathFinder.setWorldSize({10, 10});

// Set the heuristic function (manhattan, euclidean, octagonal etc...), it is optional, default is euclidean
pathFinder.setHeuristic(AStar::Heuristic::manhattan);

// if you want to enable diagonal movement, it is optional, default is false
pathFinder.setDiagonalMovement(true);

// Add a obstacle point (5, 5) and (5, 6)
pathFinder.addObstacle({5, 5});
pathFinder.addObstacle({5, 6});

// Find the path from (0, 0) to (9, 9)
auto path = pathFinder.findPath({0, 0}, {9, 9});

// Print the path
for (auto& p : path) {
std::cout << p.x << " " << p.y << std::endl;
}

return 0;
}
```

### Alternative version (direct access to the map)

You can use the alternative version of the library if you want astar have direct access to the map, this version is faster than the non-direct access version.

```cpp
#include
#include

auto main() -> int {
// Create the template class with optional a type (e.g. uint32_t) and a boolean
// if you want enable debug mode (AStar::AStar)
AStar::AStarFast pathFinder;

// Set the heuristic function (manhattan, euclidean, octagonal etc...), it is optional, default is euclidean
pathFinder.setHeuristic(AStar::Heuristic::manhattan);

// if you want to enable diagonal movement, it is optional, default is false
pathFinder.setDiagonalMovement(true);

// Create world 9x9 filled with 0
std::vector world(9 * 9, 0);

// set lambda function to check if is an obstacle (value == 1)
auto isObstacle = [](uint32_t value) -> bool { return value == 1; };
pathFinder.setObstacle(isObstacle);

// Add a obstacle point (5, 5) and (5, 6)
world[5 + 5 * 9] = 1;
world[5 + 6 * 9] = 1;

// Find the path from (0, 0) to (9, 9), it it equal to 0, then the path is not found
// This version of findPath() is faster due direct access to the world
auto path = pathFinder.findPath({0, 0}, {9, 9}, world, {9, 9});

// Print the path
for (auto& p : path) {
std::cout << p.x << " " << p.y << std::endl;
}

return 0;
}
```

### Debug mode

You can enable the debug mode to call a lambda function when new node is visiting by the algorithm and when new node is added to the open list.

```cpp
#include

#include

auto main() -> int {
// Enable debug mode with template argument, this helps avoid performance issues on non-debug classes
AStar::AStar pathFinder;

// Set lambda function to debug current node
std::function* node)> debugCurrentNode = [](const AStar::Node* node) {
std::cout << "Current node: " << node->pos.x << ", " << node->pos.y << std::endl;
};
pathFinder.setDebugCurrentNode(debugCurrentNode);

// Set lambda function to debug open node
std::function* node)> debugOpenNode = [](const AStar::Node* node) {
std::cout << "Add to open list: " << node->pos.x << ", " << node->pos.y << std::endl;
};
pathFinder.setDebugOpenNode(debugOpenNode);

// Define the map size (width, height)
pathFinder.setWorldSize({10, 10});

// Set the heuristic function (manhattan, euclidean, octagonal etc...), it is optional, default is euclidean
pathFinder.setHeuristic(AStar::Heuristic::manhattan);

// if you want to enable diagonal movement, it is optional, default is false
pathFinder.setDiagonalMovement(true);

// Add a obstacle point (5, 5) and (5, 6)
pathFinder.addObstacle({5, 5});
pathFinder.addObstacle({5, 6});

// Find the path from (0, 0) to (9, 9)
auto path = pathFinder.findPath({0, 0}, {9, 9});

// Print the path
for (auto& p : path) {
std::cout << p.x << " " << p.y << std::endl;
}

return 0;
}
```

# Building and installing

See the [BUILDING](BUILDING.md) document.

# Contributing

See the [CONTRIBUTING](CONTRIBUTING.md) document.

# Sources, references and ideas

You can find here the sources, references, libs and ideas that I have used to make this library.

## Astar

Sources and references that I have used to make this library.

* [Wikipedia A* search algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm)
* [A* Pathfinding](https://www.youtube.com/watch?v=-L-WgKMFuhE)
* [AStar](https://github.com/yatima1460/AStar)
* [Introduction to A*](https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html)
* [Easy A* (star) Pathfinding](https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2)
* [a-star](https://www.ce.unipr.it/people/medici/a-star.html)$
* [A* Search Algorithm](https://yuminlee2.medium.com/a-search-algorithm-42c1a13fcf9f)

## Others astar implementations

The list of others astar implementations that I have benchmarked to compare the performance of my implementation.

* [A* Search Algorithm](https://www.geeksforgeeks.org/a-search-algorithm/)
* [a-star](https://github.com/daancode/a-star)
* [A-Star-Search-Algorithm](https://github.com/lychengrex/A-Star-Search-Algorithm)
* [Pathfinding](https://github.com/Gerard097/Pathfinding)

## Libraries

Libraries used in this project.

* [cmake-init](https://github.com/friendlyanon/cmake-init)
* [google test](https://github.com/google/googletest)
* [google benchmark](https://github.com/google/benchmark)
* [Raylib](https://github.com/raysan5/raylib)

# Others

* [Benchmark visualization](https://int-i.github.io/python/2021-11-07/matplotlib-google-benchmark-visualization/)

# Licensing

[LICENSE](LICENSE)