Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bentoml/OpenLLM

Run any open-source LLMs, such as Llama 2, Mistral, as OpenAI compatible API endpoint, locally and in the cloud.
https://github.com/bentoml/OpenLLM

ai bentoml falcon fine-tuning llama llama2 llm llm-inference llm-ops llm-serving llmops mistral ml mlops model-inference mpt open-source-llm openllm stablelm vicuna

Last synced: about 2 months ago
JSON representation

Run any open-source LLMs, such as Llama 2, Mistral, as OpenAI compatible API endpoint, locally and in the cloud.

Awesome Lists containing this project

README

        

# 🦾 OpenLLM: Self-Hosting LLMs Made Easy

[![License: Apache-2.0](https://img.shields.io/badge/License-Apache%202-green.svg)](https://github.com/bentoml/OpenLLM/blob/main/LICENSE)
[![Releases](https://img.shields.io/pypi/v/openllm.svg?logo=pypi&label=PyPI&logoColor=gold)](https://pypi.org/project/openllm)
[![CI](https://results.pre-commit.ci/badge/github/bentoml/OpenLLM/main.svg)](https://results.pre-commit.ci/latest/github/bentoml/OpenLLM/main)
[![X](https://badgen.net/badge/icon/@bentomlai/000000?icon=twitter&label=Follow)](https://twitter.com/bentomlai)
[![Community](https://badgen.net/badge/icon/Community/562f5d?icon=slack&label=Join)](https://l.bentoml.com/join-slack)

OpenLLM allows developers to run **any open-source LLMs** (Llama 3.2, Qwen2.5, Phi3 and [more](#supported-models)) or **custom models** as **OpenAI-compatible APIs** with a single command. It features a [built-in chat UI](#chat-ui), state-of-the-art inference backends, and a simplified workflow for creating enterprise-grade cloud deployment with Docker, Kubernetes, and [BentoCloud](#deploy-to-bentocloud).

Understand the [design philosophy of OpenLLM](https://www.bentoml.com/blog/from-ollama-to-openllm-running-llms-in-the-cloud).

## Get Started

Run the following commands to install OpenLLM and explore it interactively.

```bash
pip install openllm # or pip3 install openllm
openllm hello
```

![hello](https://github.com/user-attachments/assets/5af19f23-1b34-4c45-b1e0-a6798b4586d1)

## Supported models

OpenLLM supports a wide range of state-of-the-art open-source LLMs. You can also add a [model repository to run custom models](#set-up-a-custom-repository) with OpenLLM.

| Model | Parameters | Quantization | Required GPU | Start a Server |
| ---------------- | ---------- | ------------ | ------------- | ----------------------------------- |
| Llama 3.1 | 8B | - | 24G | `openllm serve llama3.1:8b` |
| Llama 3.1 | 8B | AWQ 4bit | 12G | `openllm serve llama3.1:8b-4bit` |
| Llama 3.1 | 70B | AWQ 4bit | 80G | `openllm serve llama3.1:70b-4bit` |
| Llama 3.2 | 1B | - | 12G | `openllm serve llama3.2:1b` |
| Llama 3.2 | 3B | - | 12G | `openllm serve llama3.2:3b` |
| Llama 3.2 Vision | 11B | - | 80G | `openllm serve llama3.2:11b-vision` |
| Mistral | 7B | - | 24G | `openllm serve mistral:7b` |
| Qwen 2.5 | 1.5B | - | 12G | `openllm serve qwen2.5:1.5b` |
| Gemma 2 | 9B | - | 24G | `openllm serve gemma2:9b` |
| Phi3 | 3.8B | - | 12G | `openllm serve phi3:3.8b` |

...

For the full model list, see the [OpenLLM models repository](https://github.com/bentoml/openllm-models).

## Start an LLM server

To start an LLM server locally, use the `openllm serve` command and specify the model version.

> [!NOTE]
> OpenLLM does not store model weights. A Hugging Face token (HF_TOKEN) is required for gated models.
> 1. Create your Hugging Face token [here](https://huggingface.co/settings/tokens).
> 2. Request access to the gated model, such as [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B).
> 3. Set your token as an environment variable by running:
> ```bash
> export HF_TOKEN=
> ```

```bash
openllm serve llama3:8b
```

The server will be accessible at [http://localhost:3000](http://localhost:3000/), providing OpenAI-compatible APIs for interaction. You can call the endpoints with different frameworks and tools that support OpenAI-compatible APIs. Typically, you may need to specify the following:

- **The API host address**: By default, the LLM is hosted at [http://localhost:3000](http://localhost:3000/).
- **The model name:** The name can be different depending on the tool you use.
- **The API key**: The API key used for client authentication. This is optional.

Here are some examples:

OpenAI Python client

```python
from openai import OpenAI

client = OpenAI(base_url='http://localhost:3000/v1', api_key='na')

# Use the following func to get the available models
# model_list = client.models.list()
# print(model_list)

chat_completion = client.chat.completions.create(
model="meta-llama/Meta-Llama-3-8B-Instruct",
messages=[
{
"role": "user",
"content": "Explain superconductors like I'm five years old"
}
],
stream=True,
)
for chunk in chat_completion:
print(chunk.choices[0].delta.content or "", end="")
```

LlamaIndex

```python
from llama_index.llms.openai import OpenAI

llm = OpenAI(api_bese="http://localhost:3000/v1", model="meta-llama/Meta-Llama-3-8B-Instruct", api_key="dummy")
...
```

## Chat UI

OpenLLM provides a chat UI at the `/chat` endpoint for the launched LLM server at http://localhost:3000/chat.

openllm_ui

## Chat with a model in the CLI

To start a chat conversation in the CLI, use the `openllm run` command and specify the model version.

```bash
openllm run llama3:8b
```

## Model repository

A model repository in OpenLLM represents a catalog of available LLMs that you can run. OpenLLM provides a default model repository that includes the latest open-source LLMs like Llama 3, Mistral, and Qwen2, hosted at [this GitHub repository](https://github.com/bentoml/openllm-models). To see all available models from the default and any added repository, use:

```bash
openllm model list
```

To ensure your local list of models is synchronized with the latest updates from all connected repositories, run:

```bash
openllm repo update
```

To review a model’s information, run:

```bash
openllm model get llama3:8b
```

### Add a model to the default model repository

You can contribute to the default model repository by adding new models that others can use. This involves creating and submitting a Bento of the LLM. For more information, check out this [example pull request](https://github.com/bentoml/openllm-models/pull/1).

### Set up a custom repository

You can add your own repository to OpenLLM with custom models. To do so, follow the format in the default OpenLLM model repository with a `bentos` directory to store custom LLMs. You need to [build your Bentos with BentoML](https://docs.bentoml.com/en/latest/guides/build-options.html) and submit them to your model repository.

First, prepare your custom models in a `bentos` directory following the guidelines provided by [BentoML to build Bentos](https://docs.bentoml.com/en/latest/guides/build-options.html). Check out the [default model repository](https://github.com/bentoml/openllm-repo) for an example and read the [Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md) for details.

Then, register your custom model repository with OpenLLM:

```bash
openllm repo add
```

**Note**: Currently, OpenLLM only supports adding public repositories.

## Deploy to BentoCloud

OpenLLM supports LLM cloud deployment via BentoML, the unified model serving framework, and BentoCloud, an AI inference platform for enterprise AI teams. BentoCloud provides fully-managed infrastructure optimized for LLM inference with autoscaling, model orchestration, observability, and many more, allowing you to run any AI model in the cloud.

[Sign up for BentoCloud](https://www.bentoml.com/) for free and [log in](https://docs.bentoml.com/en/latest/bentocloud/how-tos/manage-access-token.html). Then, run `openllm deploy` to deploy a model to BentoCloud:

```bash
openllm deploy llama3:8b
```

> [!NOTE]
> If you are deploying a gated model, make sure to set HF_TOKEN in enviroment variables.

Once the deployment is complete, you can run model inference on the BentoCloud console:

bentocloud_ui

## Community

OpenLLM is actively maintained by the BentoML team. Feel free to reach out and join us in our pursuit to make LLMs more accessible and easy to use 👉 [Join our Slack community!](https://l.bentoml.com/join-slack)

## Contributing

As an open-source project, we welcome contributions of all kinds, such as new features, bug fixes, and documentation. Here are some of the ways to contribute:

- Repost a bug by [creating a GitHub issue](https://github.com/bentoml/OpenLLM/issues/new/choose).
- [Submit a pull request](https://github.com/bentoml/OpenLLM/compare) or help review other developers’ [pull requests](https://github.com/bentoml/OpenLLM/pulls).
- Add an LLM to the OpenLLM default model repository so that other users can run your model. See the [pull request template](https://github.com/bentoml/openllm-models/pull/1).
- Check out the [Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md) to learn more.

## Acknowledgements

This project uses the following open-source projects:

- [bentoml/bentoml](https://github.com/bentoml/bentoml) for production level model serving
- [vllm-project/vllm](https://github.com/vllm-project/vllm) for production level LLM backend
- [blrchen/chatgpt-lite](https://github.com/blrchen/chatgpt-lite) for a fancy Web Chat UI
- [chujiezheng/chat_templates](https://github.com/chujiezheng/chat_templates)
- [astral-sh/uv](https://github.com/astral-sh/uv) for blazing fast model requirements installing

We are grateful to the developers and contributors of these projects for their hard work and dedication.