Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bertoldi-collab/tracking-markers
A humble image tracking code
https://github.com/bertoldi-collab/tracking-markers
computer-vision digital-image-correlation image-processing image-processing-python image-tracking opencv
Last synced: 20 days ago
JSON representation
A humble image tracking code
- Host: GitHub
- URL: https://github.com/bertoldi-collab/tracking-markers
- Owner: bertoldi-collab
- License: mit
- Created: 2023-11-02T21:10:26.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-10-08T14:46:32.000Z (about 1 month ago)
- Last Synced: 2024-10-13T07:46:03.776Z (about 1 month ago)
- Topics: computer-vision, digital-image-correlation, image-processing, image-processing-python, image-tracking, opencv
- Language: Python
- Homepage:
- Size: 4.85 MB
- Stars: 2
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# A humble image tracking code
![Made with Python](https://img.shields.io/badge/Made%20with-Python-blue?logo=python&logoColor=ecf0f1&labelColor=34495e)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/tracking-markers?labelColor=34495e)
[![PyPI](https://img.shields.io/pypi/v/tracking-markers?labelColor=34495e)](https://pypi.org/project/tracking-markers "Go to PyPI")
![PyPI - Wheel](https://img.shields.io/pypi/wheel/tracking-markers?labelColor=34495e)
[![GitHub license](https://img.shields.io/github/license/bertoldi-collab/tracking-markers?labelColor=34495e)](https://github.com/bertoldi-collab/tracking-markers/blob/main/LICENSE)
[![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2Fbertoldi-collab%2Ftracking-markers&count_bg=%2327AE60&title_bg=%2334495E&icon=github.svg&icon_color=%23E7E7E7&title=Hits&edge_flat=false)](https://hits.seeyoufarm.com)This is a humble image tracking code.
It is humble because it does what it can.
## Installation
Intall latest version directly from PyPI with
```bash
pip install tracking-markers
```Or install from this repository (assuming you have access to the repo and ssh keys are set up in your GitHub account) with
```bash
pip install git+ssh://[email protected]/bertoldi-collab/tracking-markers.git@main
```Or clone the repository and install with
```bash
git clone [email protected]:bertoldi-collab/tracking-markers.git
cd tracking-markers
pip install -e .
```## How to use
### CLI
Run in a terminal
```bash
tracking-markers path/to/video.mp4
```See `tracking-markers --help` for more info on all the options.
### Python
The main module is [`tracking_points.py`](tracking_markers/tracking_points.py) defining the `track_points(...)` function that actually does the tracking of a given video and the function `select_markers(...)` that allows the manual selection of markers.
These functions can be used independently.
The file [`tracking_points.py`](tracking_markers/tracking_points.py) can also be used as a script.## Some info
- It is based on the [OpenCV](https://opencv.org/) library.
- Allows for markers to be manually selected or an `np.ndarray` of markers can be loaded from a file.
- Works best on high-contrast videos.