Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bes-dev/stable_diffusion.openvino


https://github.com/bes-dev/stable_diffusion.openvino

Last synced: 7 days ago
JSON representation

Awesome Lists containing this project

README

        

# stable_diffusion.openvino

Implementation of Text-To-Image generation using Stable Diffusion on Intel CPU or GPU.



## Requirements

* Linux, Windows, MacOS
* Python <= 3.9.0
* CPU or GPU compatible with OpenVINO.

## Install requirements

* Set up and update PIP to the highest version
* Install OpenVINO™ Development Tools 2022.3.0 release with PyPI
* Download requirements

```bash
python -m pip install --upgrade pip
pip install openvino-dev[onnx,pytorch]==2022.3.0
pip install -r requirements.txt
```

## Generate image from text description

```bash
usage: demo.py [-h] [--model MODEL] [--device DEVICE] [--seed SEED] [--beta-start BETA_START] [--beta-end BETA_END] [--beta-schedule BETA_SCHEDULE]
[--num-inference-steps NUM_INFERENCE_STEPS] [--guidance-scale GUIDANCE_SCALE] [--eta ETA] [--tokenizer TOKENIZER] [--prompt PROMPT] [--params-from PARAMS_FROM]
[--init-image INIT_IMAGE] [--strength STRENGTH] [--mask MASK] [--output OUTPUT]

optional arguments:
-h, --help show this help message and exit
--model MODEL model name
--device DEVICE inference device [CPU, GPU]
--seed SEED random seed for generating consistent images per prompt
--beta-start BETA_START
LMSDiscreteScheduler::beta_start
--beta-end BETA_END LMSDiscreteScheduler::beta_end
--beta-schedule BETA_SCHEDULE
LMSDiscreteScheduler::beta_schedule
--num-inference-steps NUM_INFERENCE_STEPS
num inference steps
--guidance-scale GUIDANCE_SCALE
guidance scale
--eta ETA eta
--tokenizer TOKENIZER
tokenizer
--prompt PROMPT prompt
--params-from PARAMS_FROM
Extract parameters from a previously generated image.
--init-image INIT_IMAGE
path to initial image
--strength STRENGTH how strong the initial image should be noised [0.0, 1.0]
--mask MASK mask of the region to inpaint on the initial image
--output OUTPUT output image name
```

## Examples

### Example Text-To-Image
```bash
python demo.py --prompt "Street-art painting of Emilia Clarke in style of Banksy, photorealism"
```

### Example Image-To-Image
```bash
python demo.py --prompt "Photo of Emilia Clarke with a bright red hair" --init-image ./data/input.png --strength 0.5
```

### Example Inpainting
```bash
python demo.py --prompt "Photo of Emilia Clarke with a bright red hair" --init-image ./data/input.png --mask ./data/mask.png --strength 0.5
```

## Performance

| CPU | Time per iter | Total time |
|----------------------------------------------------|---------------|------------|
| AMD Ryzen 7 4800H | 4.8 s/it | 2.58 min |
| AMD Ryzen Threadripper 1900X | 5.34 s/it | 2.58 min |
| Intel(R) Core(TM) i7-4790K @ 4.00GHz | 10.1 s/it | 5.39 min |
| Intel(R) Core(TM) i5-8279U | 7.4 s/it | 3.59 min |
| Intel(R) Core(TM) i5-8569U @ 2.8GHz (MBP13-2019) | 6.17 s/it | 3.23 min |
| Intel(R) Core(TM) i7-1165G7 @ 2.80GHz | 7.4 s/it | 3.59 min |
| Intel(R) Core(TM) i7-11800H @ 2.30GHz (16 threads) | 2.9 s/it | 1.54 min |
| Intel(R) Core(TM) i7-1280P @ 1.80GHz (6P/8E) | 5.45 s/it | 2.55 min |
| Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz | 1 s/it | 33 s |
| Intel Arc A770M | 6.64 it/s | 7.53 s |

## Acknowledgements

* Original implementation of Stable Diffusion: https://github.com/CompVis/stable-diffusion
* diffusers library: https://github.com/huggingface/diffusers

## Disclaimer

The authors are not responsible for the content generated using this project.
Please, don't use this project to produce illegal, harmful, offensive etc. content.