Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bgin/pamtra
Passive and Active Microwave TRAnsfer model
https://github.com/bgin/pamtra
Last synced: about 2 months ago
JSON representation
Passive and Active Microwave TRAnsfer model
- Host: GitHub
- URL: https://github.com/bgin/pamtra
- Owner: bgin
- Created: 2017-05-31T11:33:26.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2016-02-12T12:54:18.000Z (almost 9 years ago)
- Last Synced: 2023-03-05T19:43:09.477Z (almost 2 years ago)
- Language: Fortran
- Size: 53 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readMe.txt
Awesome Lists containing this project
README
Pamtra and pyPamtra have the following options.
Pamtra uses the nml file, pyPamtra the pyPamtra.set dictionary
For Pamtra, define settings in namelist, for pyPamtra, define in nmlSet dictonary
settings:
write_nc: write results to netcdf file instead of ASCII, pamtra only (bool, default true)
data_path: path containing the surface reflectivity data etc. (str, default data)
obs_height=833000.
units='T'
outpol='VH'
freq_str=''
file_desc=''
creator: for netcdf file (str, default "Pamtra user")
active: calculate Ze and Attenuation (bool, default true)
passive: calculate TB, thus run RT3 (bool, default true)
ground_type='S'
salinity=33.0
emissivity=0.6
lgas_extinction=.true.
gas_mod='R98'
lhyd_extinction=.true.
lphase_flag = .true.radar_simulator
radar_nfft: number of FFT points in the Doppler spectrum [typically 256 or 512] (default 256)
radar_no_Ave_ number of average spectra for noise variance reduction, typical range [1 150] (default 150)
radar_max_V:MinimumNyquistVelocity in m/sec (default 7.885)
radar_min_V:MaximumNyquistVelocity in m/sec (default -7.885)
radar_turbulence_st: turbulence broadening standard deviation st, typical range [0.1 - 0.4] m/sec (default 0.15)
radar_pnoise: radar noise in same unit as Ze mm⁶/m³ (default 1.d-3)radar_airmotion: is teh air in the radar volume moving vertically? (default .false.)
radar_airmotion_model: constant air movmement or non uniform beam filling: linear or step function ["constant","linear","step"] (default "step")
radar_airmotion_vmin: for nun uniform beamfilling minimal velocity, also taken for constant air movment(default -4.d0)
radar_airmotion_vmax: for nun uniform beamfilling minimal velocity, ignored for constant air movment(default +4.d0)
radar_airmotion_linear_steps: no of steps for linear approximation(default 30)
radar_airmotion_step_vmin: ratio of volume which moves with vmin for step function(default 0.5d0)
models available for fall velocity approximation
radar_fallVel_cloud: (default "khvorostyanov01_drops")
radar_fallVel_rain: (default "khvorostyanov01_drops")
radar_fallVel_ice: (default "khvorostyanov01_particles")
radar_fallVel_snow: (default "khvorostyanov01_particles")
radar_fallVel_graupel: (default "khvorostyanov01_spheres")
radar_fallVel_hail: (default "khvorostyanov01_spheres")radar_aliasing_nyquist_interv: simulate aliasing effects: spectrum is added x time to the left and right.(default 1)
radar_save_noise_corrected_spectra: for debugging: save the radar spectrum with noise removed (default .false.)
radar_use_hildebrand: use hildebrand & sekhon for noise estimation, actually not needed since noise is added artifically (default .false.)
radar_min_spectral_snr: threshold for peak detection. if radar_no_Ave >> 150, it can be set to 1.1(default 1.2)
radar_convolution_fft: use fft for convolution of spectrum. is alomst 10 times faster, but can introduce aretfacts for radars with *extremely* low noise levels or if noise is turned off at all. (default .true.)pyPamtra only in "set" directory :
freqs: used frequencies for calculations (list, default empty, in Pamtra handled by command line parameter)
nfreqs: amount of frequencies (int, default 0)
pyVerbose: Verbosity of the python part (int, default 0)