Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bgu-cs-vil/deepmcbm

"A Deep Moving-camera Background Model" [Erez, Shapira Weber, and Freifeld, ECCV 2022]
https://github.com/bgu-cs-vil/deepmcbm

background-estimation computer-vision deep-learning moving-camera pytorch

Last synced: 5 days ago
JSON representation

"A Deep Moving-camera Background Model" [Erez, Shapira Weber, and Freifeld, ECCV 2022]

Awesome Lists containing this project

README

        

# DeepMCBM

**Authors:** Guy Erez, Ron Shapira Weber, and Oren Freifeld.

This code repository corresponds to our ECCV '22 paper: [**DeepMCBM: A Deep Moving-camera Background Model**](https://arxiv.org/abs/2209.07923).
DeepMCBM is a novel 2D-based method for unsupervised learning of a moving-camera background model, which is highly scalable and allows for relatively-free camera motion.

##### Table of Contents
1. [Documentation](#Documentation)
* [Environment](#Environment)
* [Train, Predict and Evaluate](#Train-Predict-and-Evaluate)
* [Input, Output and Checkpoints](#Input,-Output-and-Checkpoints)
* [Predict a Pretrained Model](#Predict-a-Pretrained-Model)
1. [Results](#Results)
3. [Visual Comparisons](#Visual-Comparisons)

# Documentation

## Environment
The repository is equipped with a DeepMCBM_env.yml file.
Run conda env create -f DeepMCBM_env.yml from your terminal to set a conda environment using this file.
To ensure the environment is set properly, activate the new environment and run a "dry run" with few epochs:
```
conda activate DeepMCBM
python src/DeepMCBM.py --DryRun
```
## Train, Predict and Evaluate
To train, predict and evaluate a deepMCBM module on the default tennis sequence:
```
python src/DeepMCBM.py
```
## Input, Output and Checkpoints
The default values for the input, output, and checkpoints paths are set in ```src/args.py``` and can be changed to any path you wish. The requirement for the input directory is to have the following subdirectories: "frames" include the sequence frames, and if ground truth labels are available, a "GT" directory containing the ground truth frames. See the input/tennis for an example. The output directories are named by the sequence and the ```log_name``` argument: ```output/sequence_name/log_name``` in this directory you will find:
- background_estimation directory containing the background estimation of the model.
- MSE directory containing the Mean Square Error (MSE) computed using the ground truth labels.
- panoramic_robust_mean.png image, shows the alignment result of the STN module.

You can change the log_name simply by adding ```log_name "my_new_name"``` to your command line.

## Predict Using a Pretrained Model
To only predict and evaluate metrics:
```
python src/DeepMCBM.py --no_train_BMN --no_train_STN
```
You can change the loaded checkpoint using a flag:
```
python src/DeepMCBM.py --no_train_BMN --no_train_STN --BMN_ckpt ckpt_file.ckpt
```
Or by editing the MCBM_CKPT argument in src/args.py

Note: when using a pretrained model, the argument --pad, describing the size of the padding, must be the same as in the training phase.

# Results

https://user-images.githubusercontent.com/6692232/180310568-def4a578-091e-4a51-98c7-036e3f76f1cc.mp4

https://user-images.githubusercontent.com/6692232/180310715-9ba0d7c1-7075-476f-98e9-a964b56beadf.mp4

https://user-images.githubusercontent.com/6692232/180310721-69e822fb-89e4-46d4-89ac-fb1d9a7fc6b4.mp4

https://user-images.githubusercontent.com/6692232/180310726-bbb9a9ed-60fd-4774-8e27-22bbec92db9b.mp4

https://user-images.githubusercontent.com/6692232/180310729-1aafeeb5-36fa-4622-85aa-96e14c26c245.mp4

https://user-images.githubusercontent.com/6692232/180310734-79522a80-47ab-4391-8339-927953fdf779.mp4

https://user-images.githubusercontent.com/6692232/180310703-9390b353-37eb-41ca-802f-7ba4ffa42abd.mp4

# Visual Comparisons
[tennis.pdf](https://github.com/BGU-CS-VIL/DeepMCBM/files/9315725/tennis.pdf)

[flamingo.pdf](https://github.com/BGU-CS-VIL/DeepMCBM/files/9315795/flamingo.pdf)

[dog-gooses.pdf](https://github.com/BGU-CS-VIL/DeepMCBM/files/9315794/dog-gooses.pdf)

[bmx-trees.pdf](https://github.com/BGU-CS-VIL/DeepMCBM/files/9315796/bmx-trees.pdf)

[horsejump-high.pdf](https://github.com/BGU-CS-VIL/DeepMCBM/files/9315798/horsejump-high.pdf)