Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bhimrazy/image-recognition-app-using-fastapi-and-pytorch
This is an image recognition application based on the FastAPI framework and PyTorch which uses pretrained DenseNet 121 model to detect the image.
https://github.com/bhimrazy/image-recognition-app-using-fastapi-and-pytorch
densenet-pytorch fastapi jinja2 python pytorch tailwindcss
Last synced: 3 months ago
JSON representation
This is an image recognition application based on the FastAPI framework and PyTorch which uses pretrained DenseNet 121 model to detect the image.
- Host: GitHub
- URL: https://github.com/bhimrazy/image-recognition-app-using-fastapi-and-pytorch
- Owner: bhimrazy
- License: mit
- Created: 2021-10-25T11:26:09.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2023-10-15T13:12:35.000Z (over 1 year ago)
- Last Synced: 2024-05-14T00:09:07.048Z (9 months ago)
- Topics: densenet-pytorch, fastapi, jinja2, python, pytorch, tailwindcss
- Language: Jupyter Notebook
- Homepage:
- Size: 6.54 MB
- Stars: 21
- Watchers: 3
- Forks: 4
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![]()
Image Recognition App using FastAPI and PyTorch
In this project, I have tried to build and deploy an Image Recognition App using FastAPI and
PyTorch.## Tutorial
[![fastapi pytorch image recognition](https://user-images.githubusercontent.com/46085301/143211855-fe73e3b0-fc8c-4aa4-8428-e93cc16d6dfd.png)](https://youtu.be/7Rm5mGhYWVI)
## Installation
Run my Project```bash
git clone https://github.com/bhimrazy/Image-Recognition-App-using-FastAPI-and-PyTorch
cd Image-Recognition-App-using-FastAPI-and-PyTorch
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
uvicorn main:app --reload
```
## Image Recognition App using FastAPI and PyTorch: TODO
- [x] Create a virtual environment
- [x] Create FastAPI App
- Install fast API
- Install Uvicorn
- Install Pytest
- Install Jinja2
- Install python-multipart
- Install requests
- Create a main file with some routes
- Create a main test file to test the home page route- [x] Pytorch Setup
- Install torch & torchvision (use cpu version for small size)- [x] Prediction
- Create a predict post route
- Create a file utils.py
- Test predict route
- Create some helper function
- Put some test images inside static folder
- Create a test to upload an image in predict route
- Predict- [x] Create a home page for prediction
- Create an index.html file inside the templates directory
- Setup template and static directory in the main app
- Initial HTML for home page
- Use Tailwind CSS cdn link for css
- Google Fonts
- Create a form to predict
- update homepage route for prediction
- Update UI of the page
- Add Some javascript to autoload the image
- Add logo and favicon
- Add meta tags
- Add response image for preview as base64 data## 📚 RESOURCES:
â—† PyTorch: https://pytorch.org/tutorials/intermediate/flask_rest_api_tutorial.html
â—† FastAPI: https://fastapi.tiangolo.com## Author
- [@bhimrazy](https://www.github.com/bhimrazy)