https://github.com/bhimrazy/lung-tumours-segmentation
Empowering 3D Lung Tumour Segmentation with MONAI
https://github.com/bhimrazy/lung-tumours-segmentation
lung-tumor-segmentation monai python pytorch unet-image-segmentation
Last synced: 9 days ago
JSON representation
Empowering 3D Lung Tumour Segmentation with MONAI
- Host: GitHub
- URL: https://github.com/bhimrazy/lung-tumours-segmentation
- Owner: bhimrazy
- License: mit
- Created: 2022-04-24T06:27:21.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-04-20T07:21:44.000Z (about 1 year ago)
- Last Synced: 2025-04-19T16:29:50.579Z (2 months ago)
- Topics: lung-tumor-segmentation, monai, python, pytorch, unet-image-segmentation
- Language: Jupyter Notebook
- Homepage: https://lightning.ai/bhimrajyadav/studios/empowering-3d-lung-tumour-segmentation-with-monai
- Size: 1.55 MB
- Stars: 7
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Lungs-Tumour-segmentation
This project aims to segment lungs tumor from CT scans of Decathlon Lungs dataset using Pytorch and MONAI .
> This project is **_still under development_**.
## Directory structure
```bash
├── LICENSE # License file
├── README.md # Readme file
├── app
│ ├── gunicorn.py # Configuration for Gunicorn server
│ ├── main.py # Main application file
│ └── schemas.py # Schema definitions
├── artifacts
│ └── checkpoints # Directory for storing model checkpoints
├── conf
│ └── config.yaml # Configuration file in YAML format
├── data/ # data dir
├── logs/ # Log dir
├── notebook.ipynb # Jupyter notebook file
├── requirements.txt # File listing required Python packages
├── src/
│ ├── data_module.py # Module for data processing
│ ├── model.py # Module containing the model definition
│ └── utils.py # Utility functions module
├── download_data.sh # Shell script for downloading data
└── train.py # Script for training the model
```## Workflows
1. Set up environment.
```bash
python -m venv venv # create environment
source venv/bin/activate # activate environment
```2. Train model
```
python train.py
```## References
- [PyTorch](https://pytorch.org/docs/stable/index.html)
- [MONAI](https://monai.io/index.html)
- [LightningAI](https://lightning.ai/)
- [Brain Tumor Segmentation using MONAI and WandB](https://wandb.ai/geekyrakshit/brain-tumor-segmentation/reports/Brain-Tumor-Segmentation-using-MONAI-and-WandB---Vmlldzo0MjUzODIw)
- https://github.com/Project-MONAI/tutorials/tree/main/3d_segmentation## Authors
- [@bhimrazy](https://www.github.com/bhimrazy)
## License
[MIT](./LICENSE)