Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bids-apps/afni_proc
prototype AFNI bids app implmenting participant level preprocessing with afni_proc.py
https://github.com/bids-apps/afni_proc
bids bidsap mri preprocessing
Last synced: 2 months ago
JSON representation
prototype AFNI bids app implmenting participant level preprocessing with afni_proc.py
- Host: GitHub
- URL: https://github.com/bids-apps/afni_proc
- Owner: bids-apps
- License: apache-2.0
- Created: 2017-12-05T03:27:34.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2024-04-30T09:47:23.000Z (9 months ago)
- Last Synced: 2024-08-03T13:14:19.365Z (5 months ago)
- Topics: bids, bidsap, mri, preprocessing
- Language: HTML
- Homepage:
- Size: 85 KB
- Stars: 2
- Watchers: 4
- Forks: 4
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-bids - afni_proc
README
## Prototype AFNI preprocessing app
### Description
This is a prototype AFNI bids app implmenting participant level preprocessing
with afni_proc.py. This pipeline is currently doing temporal alignment,
nonlinear registration to standard space, bluring of 4 mm, masking, and scaling
for all epis in the input bids dataset using the following afni proc command:```bash
afni_proc.py -subj_id {subj_id} \
-script proc.bids -scr_overwrite -out_dir {out_dir} \
-blocks tshift align tlrc volreg blur mask scale \
-copy_anat {anat_path} -tcat_remove_first_trs 0 \
-dsets {epi_paths} -align_opts_aea -cost lpc+ZZ -giant_move \
-tlrc_base MNI152_T1_2009c+tlrc -tlrc_NL_warp \
-volreg_align_to MIN_OUTLIER \
-volreg_align_e2a -volreg_tlrc_warp -blur_size 4.0 -bash
```### Documentation
Documenation for afni_proc.py is available
[here](https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html).### How to report errors
Specific issues with this BIDS App should be reported on its
[issues page](https://github.com/nih-fmrif/afni_proc_BIDS_app/issues). AFNI
issues should be posted to the
[AFNI Message Board](https://afni.nimh.nih.gov/afni/community/board/list.php?1)### Acknowledgements
Please cite the 1996 paper if you use AFNI: Cox RW (1996) AFNI: Software for
analysis and visualization of functional magnetic resonance neuroimages. Comput
Biomed Res 29(3):162–173### Usage
This App has the following command line arguments:
usage: run.py [-h]
[--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
bids_dir output_dirExample BIDS App entry point script.
positional arguments:
bids_dir The directory with the input dataset formatted
according to the BIDS standard.
output_dir The directory where the output files should be stored.
If you are running a group level analysis, this folder
should be prepopulated with the results of
the participant level analysis.
{participant} Level of the analysis that will be performed. Multiple
participant level analyses can be run independently
(in parallel). Only "participant" is currently supported.optional arguments:
-h, --help show this help message and exit
--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]
The label(s) of the participant(s) that should be
analyzed. The label corresponds to
sub- from the BIDS spec (so it does
not include "sub-"). If this parameter is not provided
all subjects will be analyzed. Multiple participants
can be specified with a space separated list.
--afni_proc AFNI_PROC
Optional: command string for afni proc. Parameters
that vary by subject should be encapsulated in curly
braces and must all be included {subj_id},
{out_dir}, {anat_path}, or {epi_paths}.-script option
is added automatically so don't add it to the command. The first
_T1w for each subject will currently be used as the
anat.All of the _bold will be used as the
functionals.Example:--afni_proc="-subj_id {subj_id} -scr_overwrite -out_dir {out_dir} -blocks tshift align tlrc volreg blur mask scale -copy_anat {anat_path} -tcat_remove_first_trs 0 -dsets {epi_paths} -align_opts_aea -cost lpc+ZZ -giant_move -tlrc_base MNI152_T1_2009c+tlrc -tlrc_NL_warp -volreg_align_to MIN_OUTLIER -volreg_align_e2a -volreg_tlrc_warp -blur_size 4.0 -bash"To run it in participant level mode (for one participant):
```bash
docker run -i --rm \
-v /Users/filo/data/ds005:/bids_dataset:ro \
-v /Users/filo/outputs:/outputs \
bids/example \
/bids_dataset /outputs participant --participant_label 01
```### Special considerations
This is a very early prototype. More functionality is likely coming. Expect
breaking changes.