Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bids-apps/baracus
Predicts brain age, based on data from Freesurfer 5.3
https://github.com/bids-apps/baracus
bids bidsapp
Last synced: about 1 month ago
JSON representation
Predicts brain age, based on data from Freesurfer 5.3
- Host: GitHub
- URL: https://github.com/bids-apps/baracus
- Owner: bids-apps
- License: apache-2.0
- Created: 2017-06-06T20:21:54.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2024-04-30T09:50:00.000Z (8 months ago)
- Last Synced: 2024-08-03T13:14:19.920Z (4 months ago)
- Topics: bids, bidsapp
- Language: Python
- Homepage:
- Size: 101 KB
- Stars: 9
- Watchers: 6
- Forks: 9
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-bids - baracus
README
# BARACUS: Brain-Age Regression Analysis and Computation Utility Software
[![CircleCI](https://circleci.com/gh/BIDS-Apps/baracus.svg?style=shield&circle-token=:circle-token)](https://circleci.com/gh/BIDS-Apps/baracus)
[![DOI](https://zenodo.org/badge/93560323.svg)](https://zenodo.org/badge/latestdoi/93560323)This [BIDS App](http://bids-apps.neuroimaging.io/) predicts brain age,
based on data from Freesurfer 5.3.
It combines data from cortical thickness, cortical surface area, and
subcortical information (see Liem et al., 2017).## Requirements
Your data has to be organized according to the
[BIDS standard](http://bids.neuroimaging.io) and each subject needs at
least one T1w image.
In a first step, BARACUS runs [FreeSurfer's](http://freesurfer.net)
`recon-all` command and saves the output in `{out_dir}/freesurfer/`
If the data has previously been analyzed with FreeSurfer version 5.3.0,
and BARACUS finds them in `--freesurfer_dir` this step is skipped.**Important:** if you use previously processed FreeSurfer data
1. the data has to be preprocessed with
Freesurfer's 5.3.0 installation, not the 5.3.0-HCP installation;
2. FreeSurfer data needs to be BIDS-formatted, i.e. subject folders
should be named *sub-*, (e.g., sub-01, sub-02...)**Also important:** if you are comparing groups regarding brain-age,
make sure that the groups are well matched (e.g. regarding ethnicity;
see [here](https://github.com/BIDS-Apps/baracus/issues/10)).## Acknowledgements
If you use BARACUS in your work please cite:1. Liem et al. (2017),
1. the [zenodo DOI](https://zenodo.org/badge/latestdoi/93560323)
of the BARACUS version you used, and
1. The [FreeSurfer tool](https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation)Liem et al. (2017). Predicting brain-age
from multimodal imaging data captures cognitive impairment.
Neuroimage, 148:179–188,
[doi: 10.1016/j.neuroimage.2016.11.005](http://www.sciencedirect.com/science/article/pii/S1053811916306103).
[\[preprint\]](http://www.biorxiv.org/content/early/2016/11/07/085506)## Models
**Liem2016__OCI_norm**: Model trained on subjects that have no
objective cognitive impairment (OCI) (*OCI norm* in Liem et al., 2017).
Sample: N = 1166, 566f/600m, age: M = 59.1, SD = 15.2, 20-80y**Liem2016__full_2samp_training**: Model trained on subjects that have no
objective cognitive impairment (OCI) (*full LIFE 2sample training* in Liem et al., 2017).
Sample: N = 2377, 1133f/1244m, age: M=58.4, SD=15.4, 18-83y;
containing data from the LIFE and NKI studies.Models were trained as part of Liem et al. (2017) and the training code is available
[here](https://github.com/fliem/LeiCA_LIFE).## Modes
It can be run in **BIDS mode** (recommended) and in in **FILE mode**.In BIDS mode the input is a BIDS formatted Freesurfer folder.
In FILE mode the input is provided as surface and aseg files.
Surface files need to be sampled to fsaverage4 space,
aseg files extracted via asegstats2table.## BIDS mode
### Example
These examples demonstrate how to run the `bids/baracus` docker container.
For a brief introduction how to run BIDS Apps see
[this site](http://bids-apps.neuroimaging.io/tutorial/).
In the examples `/project/bids_sourcedata` and
`/project/baracus` are directories on your hard drive, which are mapped
into the docker container directories `/data/in` and `/data/out`,
respectively, via the `-v` flag.#### Participants
docker run -ti --rm \
-v /project/bids_sourcedata/:/data/in \
-v /project/baracus:/data/out \
bids/baracus /data/in /data/out participant \
--license_key "XX"#### Group
docker run -ti --rm \
-v /project/bids_sourcedata/:/data/in \
-v /project/baracus:/data/out \
bids/baracus /data/in /data/out group \
--license_key "XX"#### Participants with previously processed FreeSurfer data
If FreeSurfer data is already available, for example at
`/project/freesurfer/` running the follwing command will use the
previously processed data:docker run -ti --rm \
-v /project/bids_sourcedata/:/data/in \
-v /project/freesurfer/:/data/freesurfer \
-v /project/baracus:/data/out \
bids/baracus /data/in /data/out participant \
--license_key "XX" --freesurfer_dir /data/freesurfer### Usage
usage: run_brain_age_bids.py [-h]
[--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[--freesurfer_dir FREESURFER_DIR]
[--models {Liem2016__OCI_norm,Liem2016__full_2samp_training} [{Liem2016__OCI_norm,Liem2016__full_2samp_training} ...]]
--license_key LICENSE_KEY [--n_cpus N_CPUS] [-v]
bids_dir out_dir {participant,group}BARACUS: Brain-Age Regression Analysis and Computation Utility Software. BIDS
mode. You specify a BIDS-formatted freesurfer folder as input. All data is
extracted automatiacally from that folder.positional arguments:
bids_dir The directory with the input dataset formatted
according to the BIDS standard.
out_dir Results are put into {out_dir}/baracus.
{participant,group} Level of the analysis that will be performed.
"participant": predicts single subject brain age,
"group": collects single subject predictions.optional arguments:
-h, --help show this help message and exit
--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]
The label of the participant that should be analyzed.
The label corresponds to sub- from
the BIDS spec (so it does not include "sub-"). If this
parameter is not provided all subjects should be
analyzed. Multiple participants can be specified with
a space separated list.
--freesurfer_dir FREESURFER_DIR
Folder with FreeSurfer subjects formatted according to
BIDS standard. If subject's recon-all folder cannot be
found, recon-all will be run. If not specified
freesurfer data will be saved to {out_dir}/freesurfer
--models {Liem2016__OCI_norm,Liem2016__full_2samp_training} [{Liem2016__OCI_norm,Liem2016__full_2samp_training} ...]
--skip_missing Flag to skip not segmented subjects
--license_key LICENSE_KEY
FreeSurfer license key - letters and numbers after "*"
in the email you received after registration. To
register (for free) visit
https://surfer.nmr.mgh.harvard.edu/registration.html
--n_cpus N_CPUS Number of CPUs/cores available to use.
-v, --version show program's version number and exit## FILE mode
### Example
docker run -ti --rm \
-v /project/data/:/data/in \
-v /project/out:/data/out \
--entrypoint=run_brain_age_files.py \
bids/baracus /data/out \
--lh_thickness_file /data/in/s01/lh.thickness.mgh \
--rh_thickness_file /data/in/s01/rh.thickness.mgh \
--lh_area_file /data/in/s01/lh.area.mgh \
--rh_area_file /data/in/s01/rh.area.mgh \
--aseg_file /data/in/s01/aseg.txt### Usage
usage: run_brain_age_files.py [-h] [--participant_label PARTICIPANT_LABEL]
[--models {Liem2016__OCI_norm,Liem2016__full_2samp_training} [{Liem2016__OCI_norm,Liem2016__full_2samp_training} ...]]
--lh_thickness_file LH_THICKNESS_FILE
--rh_thickness_file RH_THICKNESS_FILE
--lh_area_file LH_AREA_FILE --rh_area_file
RH_AREA_FILE --aseg_file ASEG_FILE
out_dirBARACUS: Brain-Age Regression Analysis and Computation Utility Software. Files
mode. You specify lh/rh thickness/area + aseg file (with
--lh_thickness_file...). Surface files need to be sampled to fsaverage4 space,
aseg files extracted via asegstats2table. Only one subject can be specified at
a time.positional arguments:
out_dir Results are put here.optional arguments:
-h, --help show this help message and exit
--participant_label PARTICIPANT_LABEL
will be written into output files and can be omitted
--models {Liem2016__OCI_norm,Liem2016__full_2samp_training} [{Liem2016__OCI_norm,Liem2016__full_2samp_training} ...]
--lh_thickness_file LH_THICKNESS_FILE
--rh_thickness_file RH_THICKNESS_FILE
--lh_area_file LH_AREA_FILE
--rh_area_file RH_AREA_FILE
--aseg_file ASEG_FILE