https://github.com/bigmb/mb_milvus
Image Similarity search build on Milvus
https://github.com/bigmb/mb_milvus
feature-extraction imagesimilarity milvus opencv python resnet50 similarity-detection similarity-search tensorflow
Last synced: about 1 month ago
JSON representation
Image Similarity search build on Milvus
- Host: GitHub
- URL: https://github.com/bigmb/mb_milvus
- Owner: bigmb
- License: gpl-3.0
- Created: 2021-08-13T10:52:30.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2023-02-15T20:13:10.000Z (over 2 years ago)
- Last Synced: 2025-03-24T09:46:44.520Z (2 months ago)
- Topics: feature-extraction, imagesimilarity, milvus, opencv, python, resnet50, similarity-detection, similarity-search, tensorflow
- Language: Python
- Homepage:
- Size: 1.46 MB
- Stars: 18
- Watchers: 5
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Image-Similarity-Search-Milvus
Image Similarity search build on Milvus.
Get similar images from the dataset. Can be used for augmentation, diffusion models and finding similar patterns in images.[](https://hits.seeyoufarm.com)
## 1. Getting Started
Clone the repo:
```bash
git clone https://github.com/bigmb/mb_milvis.git
```
Pip install
```
pip install mb_milvus
```## 2. Requirements
```
python>=3.6
numpy
pymilvus==2.0.0rc7
tensorflow
pandas
glob
argparse
cv2
pathlib
PIL
mb_utils
mb_pandas```
Install all dependent libraries:
```bash
pip install -r requirements.txt
```
## 3. Run the fileMake sure you have the milvus 2.0.0rc7 docker-compose file and then Milvus docker running. (Refer to: https://milvus.io/docs/v2.0.0/install_standalone-docker.md)
```
wget https://github.com/milvus-io/milvus/releases/download/v2.0.0-rc7/milvus-standalone-docker-compose.yml -O docker-compose.yml
```
Start the docker container using
```
docker-compose up -d
```Image embedings extraction methods available:
[Resnet, Xception,VGG16,VGG19,InceptionV3, MobileNet]
Default : ResnetRunning the search file
```
./milvus_search.py -path_loc "path_to_img_folder" -num "number of simliar images" -batch_size "Extraction batch size if needed" -collection_name "name_of_the_collection" -save_csv "Saving location of the final CSV output"
```## 4. Running video
https://user-images.githubusercontent.com/14040051/143135715-b0d6461c-e63f-40c2-869a-6331e826d9a4.mp4