An open API service indexing awesome lists of open source software.

https://github.com/biocpy/genomicranges

Container class to represent genomic locations and support genomic analysis
https://github.com/biocpy/genomicranges

genomicranges

Last synced: 5 months ago
JSON representation

Container class to represent genomic locations and support genomic analysis

Awesome Lists containing this project

README

        

[![Project generated with PyScaffold](https://img.shields.io/badge/-PyScaffold-005CA0?logo=pyscaffold)](https://pyscaffold.org/)
[![PyPI-Server](https://img.shields.io/pypi/v/GenomicRanges.svg)](https://pypi.org/project/GenomicRanges/)
![Unit tests](https://github.com/BiocPy/GenomicRanges/actions/workflows/pypi-test.yml/badge.svg)

# GenomicRanges

GenomicRanges provides container classes designed to represent genomic locations and support genomic analysis. It is similar to Bioconductor's [GenomicRanges](https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html).

**Note: V0.4.0 is a complete overhaul of the package, as such the constructor to GenomicRanges has changed. Please refer the documentation for updated usage of the classes and the methods.**

To get started, install the package from [PyPI](https://pypi.org/project/genomicranges/)

```shell
pip install genomicranges
```

Some of the methods like `read_ucsc` require optional packages to be installed, e.g. `joblib` and can be installed by:

```sh
pip install genomicranges[optional]
```

## `GenomicRanges`

`GenomicRanges` is the base class to represent and operate over genomic regions and annotations.

### From Bioinformatic file formats

#### From `biobear`

Although the parsing capabilities in this package are limited, the [biobear](https://github.com/wheretrue/biobear) library is designed for reading and searching various bioinformatics file formats, including FASTA, FASTQ, VCF, BAM, and GFF, or from an object store like S3. Users can esily convert these representations to `GenomicRanges` (or [read more here](https://www.wheretrue.dev/docs/exon/biobear/genomicranges-integration)):

```python
from genomicranges import GenomicRanges
import biobear as bb

session = bb.new_session()

df = session.read_gtf_file("path/to/test.gtf").to_polars()
df = df.rename({"seqname": "seqnames", "start": "starts", "end": "ends"})

gg = GenomicRanges.from_polars(df)

# do stuff w/ a genomic ranges
print(len(gg), len(df))
```

## output
## 77 77

#### UCSC or GTF file

You can easily download and parse genome annotations from UCSC or load a genome annotation from a GTF file,

```python
import genomicranges

gr = genomicranges.read_gtf()
# OR
gr = genomicranges.read_ucsc(genome="hg19")

print(gr)
```

## output
## GenomicRanges with 1760959 intervals & 10 metadata columns.
## ... truncating the console print ...

### From `IRanges` (Preferred way)

If you have all relevant information to create a GenomicRanges object

```python
from genomicranges import GenomicRanges
from iranges import IRanges
from biocframe import BiocFrame
from random import random

gr = GenomicRanges(
seqnames=[
"chr1",
"chr2",
"chr3",
"chr2",
"chr3",
],
ranges=IRanges(start=[x for x in range(101, 106)], width=[11, 21, 25, 30, 5]),
strand=["*", "-", "*", "+", "-"],
mcols=BiocFrame(
{
"score": range(0, 5),
"GC": [random() for _ in range(5)],
}
),
)

print(gr)
```

## output
GenomicRanges with 5 ranges and 5 metadata columns
seqnames ranges strand score GC

[0] chr1 101 - 112 * | 0 0.2593301003406461
[1] chr2 102 - 123 - | 1 0.7207993213776644
[2] chr3 103 - 128 * | 2 0.23391468067222065
[3] chr2 104 - 134 + | 3 0.7671026589720187
[4] chr3 105 - 110 - | 4 0.03355777784472458
------
seqinfo(3 sequences): chr1 chr2 chr3

### Pandas `DataFrame`

A common representation in Python is a pandas `DataFrame` for all tabular datasets. `DataFrame` must contain columns "seqnames", "starts", and "ends" to represent genomic intervals. Here's an example:

```python
from genomicranges import GenomicRanges
import pandas as pd
from random import random

df = pd.DataFrame(
{
"seqnames": ["chr1", "chr2", "chr1", "chr3", "chr2"],
"starts": [101, 102, 103, 104, 109],
"ends": [112, 103, 128, 134, 111],
"strand": ["*", "-", "*", "+", "-"],
"score": range(0, 5),
"GC": [random() for _ in range(5)],
}
)

gr = GenomicRanges.from_pandas(df)
print(gr)
```

## output
GenomicRanges with 5 ranges and 5 metadata columns
seqnames ranges strand score GC

0 chr1 101 - 112 * | 0 0.4862658925128007
1 chr2 102 - 103 - | 1 0.27948386889389953
2 chr1 103 - 128 * | 2 0.5162697718607901
3 chr3 104 - 134 + | 3 0.5979843806415466
4 chr2 109 - 111 - | 4 0.04740781186083798
------
seqinfo(3 sequences): chr1 chr2 chr3

### Polars `DataFrame`

Similarly, To initialize from a polars `DataFrame`:

```python
from genomicranges import GenomicRanges
import polars as pl
from random import random

df = pl.DataFrame(
{
"seqnames": ["chr1", "chr2", "chr1", "chr3", "chr2"],
"starts": [101, 102, 103, 104, 109],
"ends": [112, 103, 128, 134, 111],
"strand": ["*", "-", "*", "+", "-"],
"score": range(0, 5),
"GC": [random() for _ in range(5)],
}
)

gr = GenomicRanges.from_polars(df)
print(gr)
```

## output
GenomicRanges with 5 ranges and 5 metadata columns
seqnames ranges strand score GC

0 chr1 101 - 112 * | 0 0.4862658925128007
1 chr2 102 - 103 - | 1 0.27948386889389953
2 chr1 103 - 128 * | 2 0.5162697718607901
3 chr3 104 - 134 + | 3 0.5979843806415466
4 chr2 109 - 111 - | 4 0.04740781186083798
------
seqinfo(3 sequences): chr1 chr2 chr3

### Interval Operations

`GenomicRanges` supports most [interval based operations](https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html).

```python
subject = genomicranges.read_ucsc(genome="hg38")

query = genomicranges.from_pandas(
pd.DataFrame(
{
"seqnames": ["chr1", "chr2", "chr3"],
"starts": [100, 115, 119],
"ends": [103, 116, 120],
}
)
)

hits = subject.nearest(query, ignore_strand=True)
print(hits)
```

## output
[[0, 1], [1677082, 1677083, 1677084], [1003411, 1003412]]

## `GenomicRangesList`

Just as it sounds, a `GenomicRangesList` is a named-list like object. If you are wondering why you need this class, a `GenomicRanges` object lets us specify multiple genomic elements, usually where the genes start and end. Genes are themselves made of many sub-regions, e.g. exons. `GenomicRangesList` allows us to represent this nested structure.

**Currently, this class is limited in functionality.**

To construct a GenomicRangesList

```python
from genomicranges import GenomicRanges, GenomicRangesList
from iranges import IRanges
from biocframe import BiocFrame

gr1 = GenomicRanges(
seqnames=["chr1", "chr2", "chr1", "chr3"],
ranges=IRanges([1, 3, 2, 4], [10, 30, 50, 60]),
strand=["-", "+", "*", "+"],
mcols=BiocFrame({"score": [1, 2, 3, 4]}),
)

gr2 = GenomicRanges(
seqnames=["chr2", "chr4", "chr5"],
ranges=IRanges([3, 6, 4], [30, 50, 60]),
strand=["-", "+", "*"],
mcols=BiocFrame({"score": [2, 3, 4]}),
)
grl = GenomicRangesList(ranges=[gr1, gr2], names=["gene1", "gene2"])
print(grl)
```

## output
GenomicRangesList with 2 ranges and 2 metadata columns

Name: gene1
GenomicRanges with 4 ranges and 4 metadata columns
seqnames ranges strand score

[0] chr1 1 - 11 - | 1
[1] chr2 3 - 33 + | 2
[2] chr1 2 - 52 * | 3
[3] chr3 4 - 64 + | 4
------
seqinfo(3 sequences): chr1 chr2 chr3

Name: gene2
GenomicRanges with 3 ranges and 3 metadata columns
seqnames ranges strand score

[0] chr2 3 - 33 - | 2
[1] chr4 6 - 56 + | 3
[2] chr5 4 - 64 * | 4
------
seqinfo(3 sequences): chr2 chr4 chr5

## Further information

- [Tutorial](https://biocpy.github.io/GenomicRanges/tutorial.html)
- [API documentation](https://biocpy.github.io/GenomicRanges/api/modules.html)
- [Bioc/GenomicRanges](https://bioconductor.org/packages/release/bioc/html/GenomicRanges.html)

## Note

This project has been set up using PyScaffold 4.1.1. For details and usage
information on PyScaffold see https://pyscaffold.org/.