An open API service indexing awesome lists of open source software.

https://github.com/biocpy/hdf5array

HDF5 File-backed arrays for Python
https://github.com/biocpy/hdf5array

delayedarray hdf5

Last synced: 5 months ago
JSON representation

HDF5 File-backed arrays for Python

Awesome Lists containing this project

README

          

[![Project generated with PyScaffold](https://img.shields.io/badge/-PyScaffold-005CA0?logo=pyscaffold)](https://pyscaffold.org/)
[![PyPI-Server](https://img.shields.io/pypi/v/hdf5array.svg)](https://pypi.org/project/hdf5array/)
[![Monthly Downloads](https://pepy.tech/badge/hdf5array/month)](https://pepy.tech/project/hdf5array)
![Unit tests](https://github.com/BiocPy/hdf5array/actions/workflows/pypi-test.yml/badge.svg)

# hdf5array

## Introduction

This is the Python equivalent of Bioconductor's [**HDF5Array**](https://bioconductor.org/packages/HDF5Array) package,
providing a representation of HDF5-backed arrays within the [**delayedarray**](https://github.com/BiocPy/delayedarray) framework.
The idea is to allow users to store, manipulate and operate on large datasets without loading them into memory,
in a manner that is trivially compatible with other data structures in the [**BiocPy**](https::/github.com/BiocPy) ecosystem.

## Installation

This package can be installed from [PyPI](https://pypi.org/project/hdf5array/) with the usual commands:

```shell
pip install hdf5array
```

## Quick start

Let's mock up a dense array:

```python
import numpy
data = numpy.random.rand(40, 50, 100)

import h5py
with h5py.File("whee.h5", "w") as handle:
handle.create_dataset("yay", data=data)
```

We can now represent it as a `Hdf5DenseArray`:

```python
import hdf5array
arr = hdf5array.Hdf5DenseArray("whee.h5", "yay", native_order=True)
## <40 x 50 x 100> Hdf5DenseArray object of type 'float64'
## [[[0.63008796, 0.34849183, 0.75621679, ..., 0.07343495, 0.63095765,
## 0.625732 ],
## [0.68123095, 0.91403054, 0.74737122, ..., 0.17344344, 0.82254404,
## 0.58158815],
## [0.83287116, 0.40738123, 0.89887551, ..., 0.34936481, 0.76600276,
## 0.91991967],
## ...,
```

This is just a subclass of a `DelayedArray` and can be used anywhere in the BiocPy framework.
Parts of the NumPy API are also supported - for example, we could apply a variety of delayed operations:

```python
scaling = numpy.random.rand(100)
transformed = numpy.log1p(arr / scaling)
## <40 x 50 x 100> DelayedArray object of type 'float64'
## [[[0.58803887, 0.3458478 , 0.82700531, ..., 0.08224734, 0.65678967,
## 0.56893312],
## [0.62348907, 0.7341526 , 0.82040225, ..., 0.18437718, 0.7932422 ,
## 0.53784637],
## [0.72176703, 0.39407341, 0.92788307, ..., 0.34205035, 0.75487196,
## 0.75456938],
## ...,
```

Check out the [documentation](https://biocpy.github.io/hdf5array/) for more details.

## Handling sparse matrices

We support a variety of compressed sparse formats where the non-zero elements are held inside three separate datasets -
usually `data`, `indices` and `indptr`, based on the [10X Genomics sparse HDF5 format](https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/h5_matrices).
To demonstrate, let's mock up some sparse data using **scipy**:

```python
import scipy.sparse
mock = scipy.sparse.random(1000, 200, 0.1).tocsc()

with h5py.File("sparse_whee.h5", "w") as handle:
handle.create_dataset("sparse_blah/data", data=mock.data, compression="gzip")
handle.create_dataset("sparse_blah/indices", data=mock.indices, compression="gzip")
handle.create_dataset("sparse_blah/indptr", data=mock.indptr, compression="gzip")
```

We can then create a sparse HDF5-backed matrix.
Note that there is some variation in this HDF5 compressed sparse format, notably where the dimensions are stored and whether it is column/row-major.
The constructor will not do any auto-detection so we need to provide this information explicitly:

```python
import hdf5array
arr = hdf5array.Hdf5CompressedSparseMatrix(
"sparse_whee.h5",
"sparse_blah",
shape=(100, 200),
by_column=True
)
## <100 x 200> sparse Hdf5CompressedSparseMatrix object of type 'float64'
## [[0. , 0. , 0.26563417, ..., 0. , 0. ,
## 0. ],
## [0. , 0. , 0. , ..., 0.23896924, 0. ,
## 0. ],
## [0. , 0. , 0. , ..., 0.42236848, 0.3585153 ,
## 0. ],
## ...,
## [0. , 0. , 0.3363087 , ..., 0. , 0. ,
## 0. ],
## [0. , 0. , 0. , ..., 0. , 0. ,
## 0. ],
## [0. , 0. , 0. , ..., 0. , 0. ,
## 0. ]]
```