Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/biomed-AI/CoSMIG
Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction
https://github.com/biomed-AI/CoSMIG
Last synced: about 2 months ago
JSON representation
Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction
- Host: GitHub
- URL: https://github.com/biomed-AI/CoSMIG
- Owner: biomed-AI
- License: mit
- Created: 2021-09-27T07:22:31.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2023-02-21T13:07:35.000Z (almost 2 years ago)
- Last Synced: 2024-08-09T13:20:34.627Z (5 months ago)
- Language: Python
- Size: 15.9 MB
- Stars: 11
- Watchers: 2
- Forks: 4
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - biomed-AI/CoSMIG - 基因相互作用预测的交际子图表示学习 (药物-靶标 药物-药物 化合物-蛋白质 相互作用 / 网络服务_其他)
README
# CoSMIG
Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction![alt text](https://github.com/Jh-SYSU/CoSMIG/blob/main/framework.jpg "Illustration of CoSMIG")
This is the standalone code for our paper: [Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction](https://arxiv.org/abs/2205.05957)
## Requirements
Stable version: Python 3.7.9 + PyTorch 1.7.1+cu110 + PyTorch_Geometric 1.6.3.
Install [PyTorch](https://pytorch.org/)
Install [PyTorch_Geometric](https://rusty1s.github.io/pytorch_geometric/build/html/notes/installation.html)
Other required python libraries: numpy, scipy, pandas, h5py, networkx, tqdm etc.
Also you can install the required packages follow there instructions (tested on a linux terminal):
`conda env create -f environment.yaml`
## Datasets
Please Contact us ([email protected]) to obtain the Data (from DrugBank and DGIdb) and Splits.
### Statistic of DGI Dataset
|Dataset|DrugBank|DGIdb|
|:-:|:-:|:-:|
|#Drug|425|1185|
|#Gene|11284|1164|
|#Interactions|80924|11266|
|Interaction type|2|14|## Usages
For training on DrugBank on the transductive scenario:
```
CUDA_VISIBLE_DEVICES=0 python main.py --data-name DrugBank --testing --dynamic-train --dynamic-test --dynamic-val --save-results --max-nodes-per-hop 200
```For training on DGIdb on the inductive scenario:
```
CUDA_VISIBLE_DEVICES=0 python main.py --data-name DGIdb --testing --mode inductive --dynamic-train --dynamic-test --dynamic-val --save-results --max-nodes-per-hop 200
```More parameters could be found by:
```
python main.py -h
```## Reference
If you find the code useful, please cite our paper.
```
@inproceedings{cosmig,
title = {Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction},
author = {Rao, Jiahua and Zheng, Shuangjia and Mai, Sijie and Yang, Yuedong},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
editor = {Lud De Raedt},
pages = {3919--3925},
year = {2022},
month = {7},
note = {Main Track},
doi = {10.24963/ijcai.2022/544},
url = {https://doi.org/10.24963/ijcai.2022/544},
}
```## Contact
Jiahua Rao ([email protected]) and Yuedong Yang ([email protected])