Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/biomed-AI/CoSMIG

Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction
https://github.com/biomed-AI/CoSMIG

Last synced: about 2 months ago
JSON representation

Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction

Awesome Lists containing this project

README

        

# CoSMIG
Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction

![alt text](https://github.com/Jh-SYSU/CoSMIG/blob/main/framework.jpg "Illustration of CoSMIG")

This is the standalone code for our paper: [Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction](https://arxiv.org/abs/2205.05957)

## Requirements

Stable version: Python 3.7.9 + PyTorch 1.7.1+cu110 + PyTorch_Geometric 1.6.3.

Install [PyTorch](https://pytorch.org/)

Install [PyTorch_Geometric](https://rusty1s.github.io/pytorch_geometric/build/html/notes/installation.html)

Other required python libraries: numpy, scipy, pandas, h5py, networkx, tqdm etc.

Also you can install the required packages follow there instructions (tested on a linux terminal):

`conda env create -f environment.yaml`

## Datasets

Please Contact us ([email protected]) to obtain the Data (from DrugBank and DGIdb) and Splits.

### Statistic of DGI Dataset
|Dataset|DrugBank|DGIdb|
|:-:|:-:|:-:|
|#Drug|425|1185|
|#Gene|11284|1164|
|#Interactions|80924|11266|
|Interaction type|2|14|

## Usages
For training on DrugBank on the transductive scenario:
```
CUDA_VISIBLE_DEVICES=0 python main.py --data-name DrugBank --testing --dynamic-train --dynamic-test --dynamic-val --save-results --max-nodes-per-hop 200
```

For training on DGIdb on the inductive scenario:
```
CUDA_VISIBLE_DEVICES=0 python main.py --data-name DGIdb --testing --mode inductive --dynamic-train --dynamic-test --dynamic-val --save-results --max-nodes-per-hop 200
```

More parameters could be found by:
```
python main.py -h
```

## Reference
If you find the code useful, please cite our paper.
```
@inproceedings{cosmig,
title = {Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction},
author = {Rao, Jiahua and Zheng, Shuangjia and Mai, Sijie and Yang, Yuedong},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
editor = {Lud De Raedt},
pages = {3919--3925},
year = {2022},
month = {7},
note = {Main Track},
doi = {10.24963/ijcai.2022/544},
url = {https://doi.org/10.24963/ijcai.2022/544},
}
```

## Contact
Jiahua Rao ([email protected]) and Yuedong Yang ([email protected])