An open API service indexing awesome lists of open source software.

https://github.com/bionumpy/npstructures


https://github.com/bionumpy/npstructures

Last synced: 6 months ago
JSON representation

Awesome Lists containing this project

README

          

================
Numpy Structures
================

.. image:: https://img.shields.io/pypi/v/npstructures.svg
:target: https://pypi.python.org/pypi/npstructures

.. image:: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml/badge.svg
:target: https://github.com/knutdrand/npstructures/actions/workflows/python-install-and-test.yml

.. image:: https://readthedocs.org/projects/npstructures/badge/?version=latest
:target: https://npstructures.readthedocs.io/en/latest/?version=latest
:alt: Documentation Status

Simple data structures that augments the numpy library

* Free software: MIT license
* Documentation: https://npstructures.readthedocs.io.

Features
--------
The main feature is the `RaggedArray` class which enables `numpy`-like behaviour and performance for arrays where
the length of the rows differ.

`RaggedArray` is meant as a drop-in replacement for `numpy` when you have arrays with differing row lengths.
As such, familiarity with `numpy` is assumed. The simplest way to construct a `RaggedArray` is from a list of lists::

>>> from npstructures import RaggedArray
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])

A `RaggedArray` can be indexed much like a `numpy` array::

>>> ra[1]
array([4, 1, 3, 7])
>>> ra[1, 3]
7
>>> ra[1:3]
RaggedArray([[4, 1, 3, 7], [9]])
>>> ra[[0, 3]]
RaggedArray([[1, 2], [8, 7, 3, 4]])
>>> ra[0] = [0, 0]
>>> ra
RaggedArray([[0, 0], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> ra[1:3] = [[10], [20]]
>>> ra
RaggedArray([[0, 0], [10, 10, 10, 10], [20], [8, 7, 3, 4]])
>>> ra[[0, 2, 3]] = RaggedArray([[2, 2], [3], [5, 5, 5, 5]])
>>> ra
RaggedArray([[2, 2], [10, 10, 10, 10], [3], [5, 5, 5, 5]])

`numpy ufuncs` can be applied to `RaggedArray` objects::

>>> ra + 1
RaggedArray([[2, 3], [5, 2, 4, 8], [10], [9, 8, 4, 5]])
>>> ra*2
RaggedArray([[2, 4], [8, 2, 6, 14], [18], [16, 14, 6, 8]])
>>> ra + [[1], [10], [100], [1000]]
RaggedArray([[2, 3], [14, 11, 13, 17], [109], [1008, 1007, 1003, 1004]])
>>> ra - (ra*2)
RaggedArray([[-1, -2], [-4, -1, -3, -7], [-9], [-8, -7, -3, -4]])

Some `numpy` functions can be applied to `RaggedArray` objects::

>>> import numpy as np
>>> ra = RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4]])
>>> np.concatenate((ra, ra*10))
RaggedArray([[1, 2], [4, 1, 3, 7], [9], [8, 7, 3, 4], [10, 20], [40, 10, 30, 70], [90], [80, 70, 30, 40]])
>>> np.nonzero(ra>3)
(array([1, 1, 2, 3, 3, 3]), array([0, 3, 0, 0, 1, 3]))
>>> np.ones_like(ra)
RaggedArray([[1, 1], [1, 1, 1, 1], [1], [1, 1, 1, 1]])

In addition to this. `HashTable` and `Counter` provides simple `dict`-like behaviour for `numpy` arrays:

`HashTable` can be used for `dict`-like functionality of `numpy` arrays. The simplest way to construct a `HashTable` is from an array of keys and an array of values (note that the set of keys cannot be modified after the initialization of the object)::

>>> table = HashTable([11, 113, 1191, 11199], [2, 3, 5, 7])
>>> table[11]
array([2])
>>> table[[113, 11199]]
array([3, 7])
>>> table[11]=1000
>>> table
HashTable([ 113 1191 11 11199], [ 3 5 1000 7])
>>> table[[113, 1191]]=2000
>>> table
HashTable([ 113 1191 11 11199], [2000 2000 1000 7])
>>> table[[113, 1191, 11, 11191]] = [1, 2, 3, 4]
>>> table[[113, 1191, 11, 11199]] = [1, 2, 3, 4]
>>> table
HashTable([ 113 1191 11 11199], [1 2 3 4])

`Counter` objects supports counting the occurances of a predefined set of keys in a set of samples. For instance, to count the occurances of `3` and `1` in the list ``[3, 2, 1, 3, 4, 1, 1]``::

>>> from npstructures import Counter
>>> counter = Counter([3, 1])
>>> counter.count([3, 2, 1, 3, 4, 1, 1])
>>> counter
Counter([3 1], [2 3])

Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage