Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bistcuite/plainml
Painless Machine Learning Library for python based on scikit-learn
https://github.com/bistcuite/plainml
machine-learning ml plainml python scikit-learn
Last synced: 18 days ago
JSON representation
Painless Machine Learning Library for python based on scikit-learn
- Host: GitHub
- URL: https://github.com/bistcuite/plainml
- Owner: bistcuite
- License: mit
- Created: 2022-01-28T12:58:29.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-04-02T15:37:22.000Z (over 2 years ago)
- Last Synced: 2024-10-09T09:26:43.861Z (28 days ago)
- Topics: machine-learning, ml, plainml, python, scikit-learn
- Language: Python
- Homepage:
- Size: 19.5 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# PlainML
Painless Machine Learning Library for python based on [scikit-learn](https://scikit-learn.org/stable/).[![Pypi](https://img.shields.io/pypi/v/plainml)](https://pypi.org/project/plainml)
[![Downloads](https://pepy.tech/badge/plainml)](https://pepy.tech/project/plainml)## Installation
```
pip install plainml
```## Example
```py
from plainml import KnnModel, load_iris, train_test_splitdt = load_iris()
data = dt.data
target = dt.targetx_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2)
model = KnnModel(x_train, y_train)
model.fit()print(model.score(x_test, y_test))
print(model.predict([[5.1, 3.5, 1.4, 0.2]]))model.save(file_name='iris_knn.pkl')
```## Todo
- `run_api`**WIP**
- `create_dashboard`
- AutoML## License
[MIT License](LICENSE)