Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bitly/data_hacks

Command line utilities for data analysis
https://github.com/bitly/data_hacks

Last synced: 6 days ago
JSON representation

Command line utilities for data analysis

Awesome Lists containing this project

README

        

data_hacks
==========

Command line utilities for data analysis

Installing: `pip install data_hacks`

Installing from github `pip install -e git://github.com/bitly/data_hacks.git#egg=data_hacks`

Installing from source `python setup.py install`

data_hacks are friendly. Ask them for usage information with `--help`

histogram.py
------------

A utility that parses input data points and outputs a text histogram

Example:

$ cat /tmp/data | histogram.py --percentage --max=1000 --min=0
# NumSamples = 60; Min = 0.00; Max = 1000.00
# 1 value outside of min/max
# Mean = 332.666667; Variance = 471056.055556; SD = 686.335236; Median 191.000000
# each ∎ represents a count of 1
0.0000 - 100.0000 [ 28]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ (46.67%)
100.0000 - 200.0000 [ 2]: ∎∎ (3.33%)
200.0000 - 300.0000 [ 2]: ∎∎ (3.33%)
300.0000 - 400.0000 [ 8]: ∎∎∎∎∎∎∎∎ (13.33%)
400.0000 - 500.0000 [ 8]: ∎∎∎∎∎∎∎∎ (13.33%)
500.0000 - 600.0000 [ 7]: ∎∎∎∎∎∎∎ (11.67%)
600.0000 - 700.0000 [ 3]: ∎∎∎ (5.00%)
700.0000 - 800.0000 [ 0]: (0.00%)
800.0000 - 900.0000 [ 1]: ∎ (1.67%)
900.0000 - 1000.0000 [ 0]: (0.00%)

With logarithmic scale

$ printf 'import random\nfor i in range(1000):\n print random.randint(0,10000)'|\
python -|./data_hacks/histogram.py -l
# NumSamples = 1000; Min = 2.00; Max = 9993.00
# Mean = 4951.757000; Variance = 8279390.995951; SD = 2877.393090; Median 4828.000000
# each ∎ represents a count of 6
2.0000 - 11.7664 [ 3]:
11.7664 - 31.2991 [ 0]:
31.2991 - 70.3646 [ 5]:
70.3646 - 148.4956 [ 11]: ∎
148.4956 - 304.7576 [ 15]: ∎∎
304.7576 - 617.2815 [ 35]: ∎∎∎∎∎
617.2815 - 1242.3294 [ 51]: ∎∎∎∎∎∎∎∎
1242.3294 - 2492.4252 [ 128]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
2492.4252 - 4992.6168 [ 269]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
4992.6168 - 9993.0000 [ 483]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎

ninety_five_percent.py
----------------------

A utility script that takes a stream of decimal values and outputs the 95% time.

This is useful for finding the 95% response time from access logs.

Example (assuming response time is the last column in your access log):

$ awk '{print $NF}' /path/to/access.log | ninety_five_percent.py

sample.py
---------

Filter a stream to a random sub-sample of the stream

Example:

$ cat access.log | sample.py 10% | post_process.py

run_for.py
----------

Pass through data for a specified amount of time

Example:

$ tail -f access.log | run_for.py 10s | post_process.py

bar_chart.py
------------

Generate an ascii bar chart for input data (this is like a visualization of `uniq -c`)

$ cat data | bar_chart.py
# each ∎ represents a count of 1. total 63
14:40 [ 49] ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
14:41 [ 14] ∎∎∎∎∎∎∎∎∎∎∎∎∎∎

`bar_chart.py` and `histogram.py` also support ingesting pre-aggregated values. Simply provide a two column input of `countvalue` for `-a` or `valuecount` for `-A`:

$ sort /path/to/data | uniq -c | bar_chart.py -a

This is very convenient if you pull data out, say Hadoop or MySQL already aggregated.