https://github.com/bjoern-hempel/keras-machine-learning-framework-java-sources
These are the sources of the Framework https://github.com/bjoern-hempel/keras-machine-learning-framework.
https://github.com/bjoern-hempel/keras-machine-learning-framework-java-sources
Last synced: 2 months ago
JSON representation
These are the sources of the Framework https://github.com/bjoern-hempel/keras-machine-learning-framework.
- Host: GitHub
- URL: https://github.com/bjoern-hempel/keras-machine-learning-framework-java-sources
- Owner: bjoern-hempel
- Created: 2019-09-27T22:14:28.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-10-16T19:50:49.000Z (over 5 years ago)
- Last Synced: 2024-12-27T03:13:13.987Z (4 months ago)
- Language: Java
- Homepage:
- Size: 622 KB
- Stars: 1
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Keras Machine Learning Framework (Java Sources)
This repository contains the source code for the Keras Java import of the [Keras Machine Learning Framework Repository](https://github.com/bjoern-hempel/keras-machine-learning-framework). See there for more information.
# Installation
```bash
$ git clone https://github.com/bjoern-hempel/keras-machine-learning-framework-java-sources.git
$ cd keras-machine-learning-framework-java-sources
$ mvn clean install
$ mvn package
$ mvn exec:java -Dexec.mainClass="de.ixno.kmls.start.Hello" -Dexec.args="John"
Hello world! Your name is John.
```# Nine Points Example
You can find more information here: [Nine Points Example @ keras-machine-learning-framework](https://github.com/bjoern-hempel/keras-machine-learning-framework/blob/master/markdown/demos/nine_points.md)
```bash
$ mvn exec:java -Dexec.mainClass="de.ixno.kmls.nine.points.Exec"Prediction results: x_1 ∈ {0, 0.5, 1} ∧ x_2 ∈ {0, 0.5, 1}
---------------------------------------------------------
x1: 0,00; x2: 0,00; prediction: 1,00
x1: 0,00; x2: 0,50; prediction: 1,00
x1: 0,00; x2: 1,00; prediction: 1,00
x1: 0,50; x2: 0,00; prediction: 1,00
x1: 0,50; x2: 0,50; prediction: 0,00
x1: 0,50; x2: 1,00; prediction: 1,00
x1: 1,00; x2: 0,00; prediction: 1,00
x1: 1,00; x2: 0,50; prediction: 1,00
x1: 1,00; x2: 1,00; prediction: 1,00
---------------------------------------------------------```
## A. Further Tutorials
* [An introduction to artificial intelligence](https://github.com/friends-of-ai/an-introduction-to-artificial-intelligence)
## B. Sources
Currently there are no sources available.
## C. Authors
* Björn Hempel - _Initial work_ - [https://github.com/bjoern-hempel](https://github.com/bjoern-hempel)
## D. License
This tutorial is licensed under the MIT License - see the [LICENSE.md](/LICENSE.md) file for details
## E. Closing words
Have fun! :)