An open API service indexing awesome lists of open source software.

https://github.com/bjornmelin/qdrant-neo4j-crawl4ai-mcp

MCP server combining Qdrant vector search, Neo4j knowledge graphs, and Crawl4AI web intelligence with agentic RAG capabilities. FastMCP 2.0 architecture with enterprise security, monitoring, and Kubernetes deployment. AI/ML engineering powerhouse.
https://github.com/bjornmelin/qdrant-neo4j-crawl4ai-mcp

agentic-rag ai crawl4ai fastmcp graph-database hybrid-search keyword-search kubernetes mcp mcp-server neo4j pydantic-ai pydantic-v2 qdrant reranking semantic-search vector-database vector-embeddings

Last synced: 3 months ago
JSON representation

MCP server combining Qdrant vector search, Neo4j knowledge graphs, and Crawl4AI web intelligence with agentic RAG capabilities. FastMCP 2.0 architecture with enterprise security, monitoring, and Kubernetes deployment. AI/ML engineering powerhouse.

Awesome Lists containing this project

README

          

# Qdrant Neo4j Crawl4AI MCP Server

[![Production Ready](https://img.shields.io/badge/status-production--ready-brightgreen)](https://github.com/BjornMelin/qdrant-neo4j-crawl4ai-mcp)
[![FastMCP 2.0](https://img.shields.io/badge/FastMCP-2.0-blue)](https://github.com/jlowin/fastmcp)
[![Python 3.11+](https://img.shields.io/badge/python-3.11+-blue)](https://python.org)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](LICENSE)

> **Production-ready agentic RAG MCP server combining Qdrant vector search, Neo4j knowledge graphs, and Crawl4AI web intelligence with autonomous orchestration capabilities**

## 🎯 What is This?

This is an **Agentic RAG (Retrieval-Augmented Generation) MCP Server** that provides intelligent, autonomous coordination of multiple AI services through a single Model Context Protocol interface. It combines:

- **Vector Intelligence**: Semantic search and embedding storage via Qdrant
- **Graph Intelligence**: Knowledge graphs and memory systems via Neo4j
- **Web Intelligence**: Smart web crawling and content extraction via Crawl4AI
- **Agentic Orchestration**: Autonomous query routing and result fusion
- **Production-Ready**: Enterprise security, monitoring, and deployment patterns

## πŸ—οΈ Architecture

```mermaid
graph TB
Client[AI Assistant Client] --> Gateway[FastMCP Gateway]

subgraph "Qdrant Neo4j Crawl4AI MCP Server"
Gateway --> Router[Request Router]
Router --> Vector[Vector Service]
Router --> Graph[Graph Service]
Router --> Web[Web Intelligence Service]

Vector --> |mount: /vector| QdrantMCP[Qdrant MCP Server]
Graph --> |mount: /graph| Neo4jMCP[Neo4j Memory MCP]
Web --> |mount: /web| Crawl4AIMCP[Crawl4AI MCP Server]
end

subgraph "Data Layer"
QdrantMCP --> QdrantDB[(Qdrant Vector DB)]
Neo4jMCP --> Neo4jDB[(Neo4j Graph DB)]
Crawl4AIMCP --> WebSources[Web Data Sources]
end
```

## ⚑ Technology Stack

- **FastMCP 2.0**: Server composition and MCP protocol handling
- **Python 3.11+**: Modern async patterns and type safety
- **Qdrant**: Vector database for semantic search
- **Neo4j**: Graph database for knowledge representation
- **Crawl4AI**: Web intelligence and content extraction
- **Docker**: Containerized deployment with health checks

## πŸš€ Quick Start

### Prerequisites

- Python 3.11+
- uv (recommended) or pip
- Docker & Docker Compose

### Installation

```bash
# Clone the repository
git clone https://github.com/BjornMelin/qdrant-neo4j-crawl4ai-mcp.git
cd qdrant-neo4j-crawl4ai-mcp

# Install dependencies
uv sync

# Set up environment
cp .env.example .env
# Edit .env with your configuration

# Run with Docker
docker-compose up -d

# Or run locally
uv run python -m qdrant_neo4j_crawl4ai_mcp
```

### Configuration

Key environment variables:

```env
# Server Configuration
MCP_SERVER_HOST=localhost
MCP_SERVER_PORT=8000
JWT_SECRET_KEY=your-secure-secret-key

# Database Configuration
QDRANT_URL=http://localhost:6333
NEO4J_URI=bolt://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=password

# Security
RATE_LIMIT_PER_MINUTE=100
CORS_ORIGINS=https://your-domain.com
```

## πŸ’» Development

### Testing

```bash
# Run all tests
uv run pytest

# Run with coverage
uv run pytest --cov=qdrant_neo4j_crawl4ai_mcp --cov-report=html

# Run specific test suite
uv run pytest tests/integration/
```

### Code Quality

```bash
# Format code
uv run ruff format .

# Lint code
uv run ruff check . --fix

# Type checking
uv run mypy .
```

## πŸ“š API Documentation

Once running, access the interactive API documentation at:

- **Swagger UI**:
- **ReDoc**:

### Example Usage

```python
import asyncio
from qdrant_neo4j_crawl4ai_mcp.client import QdrantNeo4jCrawl4AIMCPClient

async def main():
client = QdrantNeo4jCrawl4AIMCPClient("http://localhost:8000")

# Vector search
results = await client.vector_search("artificial intelligence")

# Graph query
memories = await client.graph_query("MATCH (n:Memory) RETURN n LIMIT 10")

# Web crawling
content = await client.web_crawl("https://example.com")

asyncio.run(main())
```

## πŸ“¦ Deployment

### Docker Deployment

```bash
# Production build
docker build -t qdrant-neo4j-crawl4ai-mcp .
docker run -p 8000:8000 qdrant-neo4j-crawl4ai-mcp
```

### Cloud Deployment

- **Railway**: One-click deployment via railway.app
- **Fly.io**: Global edge deployment
- **AWS**: ECS/Lambda deployment with CDK

## πŸ“š Complete Documentation

### πŸš€ Getting Started
- **[πŸ“– Documentation Hub](docs/README.md)** - Complete navigation guide
- **[⚑ Quick Start](docs/getting-started/quick-start.md)** - 5-minute setup
- **[πŸ”§ Installation Guide](docs/getting-started/installation.md)** - Detailed setup
- **[βš™οΈ Configuration](docs/getting-started/configuration.md)** - Environment setup
- **[🎯 First Queries](docs/getting-started/first-queries.md)** - Learn the system

### πŸ“– User Guides
- **[πŸ” Vector Search Guide](docs/guides/semantic-search.md)** - Semantic similarity search
- **[πŸ•ΈοΈ Knowledge Graph Guide](docs/guides/knowledge-graphs.md)** - Graph reasoning
- **[🌐 Web Intelligence Guide](docs/guides/web-intelligence.md)** - Real-time web data
- **[πŸ€– Agentic Workflows](docs/guides/agentic-workflows.md)** - Multi-modal intelligence

### πŸ”§ Technical Reference
- **[πŸ“‹ API Reference](docs/API_REFERENCE.md)** - Complete REST API docs
- **[πŸ—οΈ Architecture](docs/ARCHITECTURE.md)** - System design overview
- **[πŸ”’ Security Guide](docs/guides/security-hardening.md)** - Enterprise security
- **[πŸ“Š Monitoring Setup](docs/guides/monitoring-observability.md)** - Production monitoring

### 🚒 Deployment & Operations
- **[πŸš€ Deployment Operations](docs/DEPLOYMENT_OPERATIONS.md)** - Production deployment
- **[☸️ Kubernetes Guide](docs/deployment/kubernetes.md)** - Container orchestration
- **[🐳 Docker Guide](docs/deployment/docker.md)** - Containerized deployment
- **[☁️ Cloud Platforms](docs/deployment/cloud-platforms.md)** - Railway, Fly.io, etc.

### πŸ’» Development & Contributing
- **[πŸ‘¨β€πŸ’» Developer Guide](docs/DEVELOPER_GUIDE.md)** - Complete dev workflow
- **[πŸ§ͺ Testing Framework](docs/development/testing.md)** - Unit & integration tests
- **[🎨 Contributing Guidelines](docs/development/contributing.md)** - How to contribute
- **[πŸ”§ Local Development](docs/development/local-setup.md)** - Dev environment setup

### πŸ“ Examples & Tutorials
- **[πŸ“š Examples Hub](docs/examples/README.md)** - Code examples & tutorials
- **[πŸ”° Basic Usage](docs/examples/basic-usage/README.md)** - Simple queries
- **[πŸš€ Advanced Workflows](docs/examples/advanced-workflows/README.md)** - Complex patterns
- **[πŸ“± Client SDKs](docs/examples/client-implementations/README.md)** - Multiple languages

For detailed deployment guides, see **[🚒 Deployment Operations](docs/DEPLOYMENT_OPERATIONS.md)**.

## πŸ”’ Security & Compliance

- **JWT Authentication**: Secure token-based authentication with refresh tokens
- **Rate Limiting**: Redis-backed distributed request throttling
- **OWASP Compliance**: Following API security best practices and security headers
- **Input Validation**: Comprehensive Pydantic-based request sanitization
- **Audit Logging**: Security event tracking with structured logging
- **Enterprise Security**: [Complete security hardening guide](docs/guides/security-hardening.md)

## πŸ“Š Monitoring & Observability

- **Health Checks**: Multi-layer `/health` endpoints with dependency validation
- **Structured Logging**: JSON logs with correlation IDs and context
- **Prometheus Metrics**: Custom business and infrastructure metrics
- **Grafana Dashboards**: Pre-built dashboards for monitoring
- **Error Tracking**: Sentry integration for error reporting
- **Distributed Tracing**: Request flow visualization across services

**Setup Guide**: [πŸ“Š Monitoring & Observability](docs/guides/monitoring-observability.md)

## 🀝 Contributing

We welcome contributions! Please see our [Contributing Guidelines](docs/development/contributing.md) for details.

### Quick Start for Contributors

```bash
# 1. Fork and clone the repository
git clone https://github.com/BjornMelin/qdrant-neo4j-crawl4ai-mcp.git
cd qdrant-neo4j-crawl4ai-mcp

# 2. Set up development environment
uv sync --dev
uv run pre-commit install

# 3. Run tests to verify setup
uv run pytest

# 4. Start development server
docker-compose up -d
uv run python -m qdrant_neo4j_crawl4ai_mcp
```

**Detailed Setup**: [πŸ’» Developer Guide](docs/DEVELOPER_GUIDE.md)

## πŸ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 🎯 Project Goals

This project demonstrates:

- **Modern Python Patterns**: Async programming, type safety, and current ecosystem tools
- **AI/ML Integration**: Vector databases, knowledge graphs, and web intelligence
- **Production Engineering**: Security, monitoring, testing, and deployment automation
- **Clean Architecture**: Composable services with clear abstractions
- **DevOps Excellence**: Container orchestration, CI/CD, and infrastructure as code

## πŸ“§ Contact

- **Author**: [Your Name]
- **Email**: [your.email@example.com]
- **LinkedIn**: [linkedin.com/in/yourprofile]
- **Portfolio**: [yourportfolio.com]

---

> Built with β˜• using FastMCP 2.0, Qdrant, Neo4j, and Web Intelligence