Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/blackprotoss/GSDM
Text Image Inpainting via Global Structure-Guided Diffusion Models (Accepted by AAAI-24)
https://github.com/blackprotoss/GSDM
Last synced: 3 months ago
JSON representation
Text Image Inpainting via Global Structure-Guided Diffusion Models (Accepted by AAAI-24)
- Host: GitHub
- URL: https://github.com/blackprotoss/GSDM
- Owner: blackprotoss
- License: mit
- Created: 2023-12-22T11:44:52.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-05-31T05:31:24.000Z (8 months ago)
- Last Synced: 2024-08-01T18:40:44.254Z (6 months ago)
- Language: Python
- Homepage:
- Size: 188 KB
- Stars: 39
- Watchers: 6
- Forks: 4
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
README
## Text Image Inpainting via Global Structure-Guided Diffusion Models (Accepted by AAAI-24)
*[Shipeng Zhu](http://palm.seu.edu.cn/homepage/zhushipeng/demo/index.html), [Pengfei Fang](https://fpfcjdsg.github.io/), Chenjie Zhu, [Zuoyan Zhao](http://palm.seu.edu.cn/homepage/zhaozuoyan/index.html), Qiang Xu, [Hui Xue](http://palm.seu.edu.cn/hxue/)*
Paper: [(arXiv 2401.14832)](https://arxiv.org/abs/2401.14832), [(AAAI-24)](https://ojs.aaai.org/index.php/AAAI/article/view/28612)
This repository offers the official Pytorch code for this paper. If you have any questions, feel free to contact Shipeng Zhu ([email protected]) or Chenjie Zhu ([email protected]).
## Environment Setup
![python](https://img.shields.io/badge/Python-v3.10-green.svg?style=plastic) ![pytorch](https://img.shields.io/badge/Pytorch-v1.13.1-green.svg?style=plastic) ![cuda](https://img.shields.io/badge/Cuda-v11.6-green.svg?style=plastic)
* Clone this repo
* Create a conda environment and activate it.
* Install related version Pytorch following
```
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
```* Install the required packages
* Download the pre-trained checkpoints, and and move these files into the "checkpoints".
## Inference phase
```python
python inference.py --config xx --input_dir input --output_dir output --save_sp False
```* config: The path loading yaml file.
* input_dir: The input image path.
* output_dir: The Output image path.
* save_sp: Whether to save structure prediction images.## Datasets and Pre-trained Checkpoints
- Download the TII-HT and TII-ST datasets from: [Baidu Cloud](https://pan.baidu.com/s/1ENLY0pn3amnlOvi4GzNdzg), Passwd: h5i0
- Download the Checkpoints from: [Baidu Cloud](https://pan.baidu.com/s/1MiyY50A2dGy0wyndYonHUA ), Passwd: dlr6; [Google Drive](https://drive.google.com/drive/folders/1ykYNzv-aYltC5I36T6SqvGWwg8no6uhY?usp=sharing).## Training phase
#### Step 1: Training SPM
```python
python train_spm.py
```* Modify the training configuration in this file ——"config/train_spm.yaml"
#### Step 2: Training RM
```
python train_rm.py
```* Modify the training configuration in this file ——"config/train_rm.yaml"
* Note that training RM requires a pre-trained SPM checkpoint, and the path should be modified in the above file.
* Download the checkpoint of the pre-trained CRNN model into the path: "crnn/data/"## Citation
```
@inproceedings{zhu2024gsdm,
title={Text image inpainting via global structure-guided diffusion models},
author={Zhu, Shipeng and Fang, Pengfei and Zhu, Chenjie and Zhao, Zuoyan and Xu, Qiang and Xue, Hui},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={38},
number={7},
pages={7775-7783},
year={2024}
}
```