Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/blacksujit/testcraftai
This project provides a web-based interface to generate test instructions using Visual Question Answering (VQA). Upload screenshots or images, provide an optional context, and let the model do the rest!
https://github.com/blacksujit/testcraftai
llm llmtuner multimodel task-runner test-automation
Last synced: about 1 month ago
JSON representation
This project provides a web-based interface to generate test instructions using Visual Question Answering (VQA). Upload screenshots or images, provide an optional context, and let the model do the rest!
- Host: GitHub
- URL: https://github.com/blacksujit/testcraftai
- Owner: Blacksujit
- Created: 2024-09-09T12:43:14.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2024-10-26T18:46:44.000Z (2 months ago)
- Last Synced: 2024-10-26T20:35:54.046Z (2 months ago)
- Topics: llm, llmtuner, multimodel, task-runner, test-automation
- Language: Python
- Homepage:
- Size: 192 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ๐งช TestCraftAI:
## Automated Test Instruction Generator
![Python](https://img.shields.io/badge/Python-3.11-blue?style=flat-square&logo=python) ![Flask](https://img.shields.io/badge/Flask-2.3.2-green?style=flat-square&logo=flask) ![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Transformers-orange?style=flat-square&logo=hugging-face)
### Problem statement :
Generate automated test instructions for your software or application features using images and optional context with the power of Hugging Face's ViLT model!
## ๐ Project Overview
This project provides a web-based interface to generate test instructions using Visual Question Answering (VQA). Upload screenshots or images, provide an optional context, and let the model do the rest!
## ๐ Features
- **Visual Question Answering:** Automatically generate test instructions based on uploaded images.
- **Context-Aware:** Include optional text context to refine the instructions.
- **Dynamic Interface:** Simple and user-friendly web interface for easy interaction.
- **Scalable:** Easily extendable with more models or features.## ๐๏ธ Project Structure
```
โโโ app/
โ โโโ app.py # Main Flask application
โ โโโ uploads/ # Directory for uploaded images
โ โโโ utils/
โ โโโ llm.py # LLM utilities (model inference functions)
โโโ templates/
โ โโโ index.html # HTML template for the web form
โโโ static/
โ โโโ css/
โ โโโ styles.css # Custom CSS for styling
โโโ README.md # Project documentation
โโโ requirements.txt # Python dependencies
โโโ .gitignore # Files and directories to ignore in Git```
# Project View :
![image](https://github.com/user-attachments/assets/0f00eb25-11db-4748-a1f1-133e96f82862)
## โ๏ธ Setup Instructions:
### Prerequisites:
1.) Python 3.7+: Ensure you have Python installed.
2.) Pip: Make sure pip is installed to manage dependencies.
## Installation:
1. Clone the Repository:
```
git clone https://github.com/Blacksujit/TestCraftAI.git
``````
cd app
```2. Create a Virtual Environment:
```
python -m venv venv
``````
On Windows: venv\Scripts\activate
```
3. Install Dependencies:
```
pip install -r requirements.txt
```4. Download the Model:
```
transformers-cli download dandelin/vilt-b32-finetuned-vqa```
5. Run the Application:
```
python app.py
```6. Access the Application:
Open your web browser and go to: http://127.0.0.1:5000
## ๐ฅ๏ธ Usage:
1.) Upload Images: Click on the upload button and select the images/screenshots you want to use for generating test instructions.
2.) Add Context: (Optional) Provide context to make the instructions more specific.
3.) Generate Instructions: Click the "Generate" button to receive your test instructions.
## ๐ ๏ธ Development:Feel free to contribute by forking the repository, making changes, and submitting a pull request!
## To Do:
1.) Add support for multiple languages.2.) Integrate more advanced models.
3.) Improve UI/UX for better interaction.
## ๐ Contributing:
Contributions are welcome! Please read the CONTRIBUTING.md for more details.
## ๐ License:
This project is licensed under the MIT License - see the LICENSE file for details.
## ๐ Acknowledgements:
1.) **Hugging Face for the ViLT model**.
2.) **Flask for providing the web framework.**
3.) **Community contributors for their continuous support.**
### Empowering test automation with AI ๐