Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/blacksujit/testcraftai

This project provides a web-based interface to generate test instructions using Visual Question Answering (VQA). Upload screenshots or images, provide an optional context, and let the model do the rest!
https://github.com/blacksujit/testcraftai

llm llmtuner multimodel task-runner test-automation

Last synced: about 1 month ago
JSON representation

This project provides a web-based interface to generate test instructions using Visual Question Answering (VQA). Upload screenshots or images, provide an optional context, and let the model do the rest!

Awesome Lists containing this project

README

        

# ๐Ÿงช TestCraftAI:

## Automated Test Instruction Generator

![Python](https://img.shields.io/badge/Python-3.11-blue?style=flat-square&logo=python) ![Flask](https://img.shields.io/badge/Flask-2.3.2-green?style=flat-square&logo=flask) ![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Transformers-orange?style=flat-square&logo=hugging-face)

### Problem statement :

Generate automated test instructions for your software or application features using images and optional context with the power of Hugging Face's ViLT model!

## ๐Ÿ“‹ Project Overview

This project provides a web-based interface to generate test instructions using Visual Question Answering (VQA). Upload screenshots or images, provide an optional context, and let the model do the rest!

## ๐Ÿš€ Features

- **Visual Question Answering:** Automatically generate test instructions based on uploaded images.
- **Context-Aware:** Include optional text context to refine the instructions.
- **Dynamic Interface:** Simple and user-friendly web interface for easy interaction.
- **Scalable:** Easily extendable with more models or features.

## ๐Ÿ—๏ธ Project Structure

```

โ”œโ”€โ”€ app/
โ”‚ โ”œโ”€โ”€ app.py # Main Flask application
โ”‚ โ”œโ”€โ”€ uploads/ # Directory for uploaded images
โ”‚ โ””โ”€โ”€ utils/
โ”‚ โ””โ”€โ”€ llm.py # LLM utilities (model inference functions)
โ”œโ”€โ”€ templates/
โ”‚ โ””โ”€โ”€ index.html # HTML template for the web form
โ”œโ”€โ”€ static/
โ”‚ โ””โ”€โ”€ css/
โ”‚ โ””โ”€โ”€ styles.css # Custom CSS for styling
โ”œโ”€โ”€ README.md # Project documentation
โ”œโ”€โ”€ requirements.txt # Python dependencies
โ””โ”€โ”€ .gitignore # Files and directories to ignore in Git

```

# Project View :

![image](https://github.com/user-attachments/assets/0f00eb25-11db-4748-a1f1-133e96f82862)

## โš™๏ธ Setup Instructions:

### Prerequisites:

1.) Python 3.7+: Ensure you have Python installed.

2.) Pip: Make sure pip is installed to manage dependencies.

## Installation:

1. Clone the Repository:

```
git clone https://github.com/Blacksujit/TestCraftAI.git
```

```

cd app
```

2. Create a Virtual Environment:

```
python -m venv venv
```

```

On Windows: venv\Scripts\activate

```

3. Install Dependencies:

```
pip install -r requirements.txt

```

4. Download the Model:

```
transformers-cli download dandelin/vilt-b32-finetuned-vqa

```

5. Run the Application:

```
python app.py
```

6. Access the Application:

Open your web browser and go to: http://127.0.0.1:5000

## ๐Ÿ–ฅ๏ธ Usage:

1.) Upload Images: Click on the upload button and select the images/screenshots you want to use for generating test instructions.

2.) Add Context: (Optional) Provide context to make the instructions more specific.

3.) Generate Instructions: Click the "Generate" button to receive your test instructions.

## ๐Ÿ› ๏ธ Development:

Feel free to contribute by forking the repository, making changes, and submitting a pull request!

## To Do:

1.) Add support for multiple languages.

2.) Integrate more advanced models.

3.) Improve UI/UX for better interaction.

## ๐Ÿ“ Contributing:

Contributions are welcome! Please read the CONTRIBUTING.md for more details.

## ๐Ÿ“œ License:

This project is licensed under the MIT License - see the LICENSE file for details.

## ๐Ÿ™ Acknowledgements:

1.) **Hugging Face for the ViLT model**.

2.) **Flask for providing the web framework.**

3.) **Community contributors for their continuous support.**

### Empowering test automation with AI ๐ŸŒŸ