Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/blei-lab/hdp
Hierarchical Dirichlet processes. Topic models where the data determine the number of topics. This implements Gibbs sampling.
https://github.com/blei-lab/hdp
Last synced: 2 months ago
JSON representation
Hierarchical Dirichlet processes. Topic models where the data determine the number of topics. This implements Gibbs sampling.
- Host: GitHub
- URL: https://github.com/blei-lab/hdp
- Owner: blei-lab
- License: gpl-2.0
- Created: 2015-03-29T22:34:26.000Z (almost 10 years ago)
- Default Branch: master
- Last Pushed: 2017-02-21T21:08:34.000Z (almost 8 years ago)
- Last Synced: 2024-08-03T18:21:50.177Z (5 months ago)
- Language: C++
- Size: 46.9 KB
- Stars: 150
- Watchers: 47
- Forks: 47
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-topic-models - HDP - C++ implementation of hierarchical Dirichlet processes by Chong Wang (Research Implementations / Embedding based Topic Models)
README
# Hierarchical Dirichlet Process (with Split-Merge Operations)
**********************************************************************
(C) Copyright 2010, Chong Wang and David Blei. Written by [Chong Wang](http://www.cs.princeton.edu/~chongw/index.html).
This is a C++ implementation of hierarchical Dirichlet process for topic modeling.
## README
NB: The split-merge algorithm is preliminary. Note that this code requires the Gnu Scientific Library, http://www.gnu.org/software/gsl/
-----------------------------------------------------------------------------------------
TABLE OF CONTENTS
A. COMPILING
B. POSTERIOR INFERENCE
C. INFERENCE ON NEW DATA
D. PARAMETER SETTINGS
E. PRINTING TOPICS
-----------------------------------------------------------------------------------------
A. COMPILING
Type "make" in a shell. Make sure the GSL is installed. You may need to change
the Makefile a bit.B. POSTERIOR INFERENCE
The following shows an example of performing posterior inference on a set of documents,
hdp --algorithm train --data data --directory train_dir
Data format
--data points to a file where each line is of the form (the LDA-C format):
[M] [term_1]:[count] [term_2]:[count] ... [term_N]:[count]
where [M] is the number of unique terms in the document, and the
[count] associated with each term is how many times that term appeared
in the document.The sampler will produce some files in the --directory,
*-topics.dat: the word counts for each topic, with each line as a topic
*-word-assignments.dat: print each word's assignment to the topic and the table,
which is in R-friendly format,
d w z td: document id
w: word id
z: topic index
t: table index (only for document level. If you only analyze the topics, this is irrelevant.)*.bin: the binary model file used for inference on new data.
state.log: various information to monitor the Markov chain.
More parameter settings, run:
hdp --helpNote: some parameters for split-merge are hand coded at the beginning of hdp.cpp
file.-----------------------------------------------------------------------------------------
C. INFERENCE ON NEW DATA
To perform inference on a different set of data (in the same format as before), run:
hdp --algorithm test --data data --saved_model saved_model --directory test_dir
where --saved_model is the binary file from the posterior inference on training data.
The sampler will produce some files in the --directory,test-*-topics.dat: the word counts for each topic, with each line as a topic
test*-word-assignments.dat: print each word's assignment to the topic and the table,
which is in R-friendly format.test.log: various information to monitor the Markov chain.
test-*.bin: the binary model file used for inference on newer data.
More parameter settings, run:
hdp --help-----------------------------------------------------------------------------------------
D. PARAMETER SETTINGS
The meaning of the parameters is the same as in the in the following paper
Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 2006. 101[476]:1566-1581-----------------------------------------------------------------------------------------
E. PRINTING TOPICS
A R script (print.topics.R) is included to print topics. Make sure it is
executable. (chmod +x print.topics.R) For example,print.topics.R mode-topics.dat vocab.dat topics.dat 10
will produce a topic list with top 10 words selected. For help, run,
print.topics.R