An open API service indexing awesome lists of open source software.

https://github.com/blinkdl/blinkdl

A minimalist deep learning library in Javascript using WebGL + asm.js. Run convolutional neural network in your browser.
https://github.com/blinkdl/blinkdl

alphago deep-learning deep-neural-networks deeplearning neural-network neural-networks

Last synced: 21 days ago
JSON representation

A minimalist deep learning library in Javascript using WebGL + asm.js. Run convolutional neural network in your browser.

Awesome Lists containing this project

README

        

# BlinkDL

A minimalist deep learning library in Javascript using WebGL + asm.js. Runs in your browser.

Currently it is a proof-of-concept (inference only). Note: Convolution is buggy when memories overlap.

The WebGL backend is powered by weblas: https://github.com/waylonflinn/weblas.

## Example

https://withablink.coding.me/goPolicyNet/ : a weiqi (baduk, go) policy network in AlphaGo style:

board_image

const N = 19;
const NN = N * N;
const nFeaturePlane = 8;
const nFilter = 128;

const x = new BlinkArray();
x.Init('weblas');
x.nChannel = nFeaturePlane;
x.data = new Float32Array(nFeaturePlane * NN);
for (var i = 0; i < NN; i++)
x.data[5 * NN + i] = 1; // set feature plane for empty board

// pre-act residual network with 6 residual blocks
const bak = new Float32Array(nFilter * NN);
x.Convolution(nFilter, 3);
x.CopyTo(bak);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.Add(bak).CopyTo(bak);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.Add(bak).CopyTo(bak);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.Add(bak).CopyTo(bak);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.Add(bak).CopyTo(bak);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.Add(bak).CopyTo(bak);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.BatchNorm().ReLU().Convolution(nFilter, 3);
x.Add(bak);
x.BatchNorm().ReLU().Convolution(1, 1).Softmax();

performance_image

## Usage




## Todo
- [x] Convolution (3x3_pad_1 and 1x1), BatchNorm, ReLU, Softmax
- [ ] Pooling layer
- [ ] FC layer
- [ ] Strided convolution
- [ ] Transposed convolution
- [ ] Webworker and async
- [ ] Faster inference with weblas pipeline, WebGPU, WebAssembly
- [ ] Memory manager
- [ ] Training