Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bluegreen-labs/daymetpy
A python script to download Daymet data
https://github.com/bluegreen-labs/daymetpy
climate-data data-retrieval daymet ornl-daac python
Last synced: about 1 month ago
JSON representation
A python script to download Daymet data
- Host: GitHub
- URL: https://github.com/bluegreen-labs/daymetpy
- Owner: bluegreen-labs
- License: other
- Created: 2016-03-08T17:07:29.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2019-10-07T03:41:40.000Z (about 5 years ago)
- Last Synced: 2024-08-09T23:23:42.922Z (5 months ago)
- Topics: climate-data, data-retrieval, daymet, ornl-daac, python
- Language: Python
- Homepage: http://bluegreen-labs.github.io/daymetpy
- Size: 325 KB
- Stars: 20
- Watchers: 2
- Forks: 10
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![build_status](https://api.travis-ci.org/khufkens/daymetpy.svg)
![status](https://img.shields.io/pypi/status/daymetpy.svg)
![version number](https://img.shields.io/pypi/v/daymetpy.svg)
![python](https://img.shields.io/pypi/pyversions/daymetpy.svg)
## daymetpy: A python library for accessing Daymet surface weather data
daymetpy attempts to fill the need for easy, integrated access to gridded daily Daymet weather data. The data are hosted by the Oak Ridge National Laboratories DAAC and accessed from [their web service](https://daymet.ornl.gov/web_services.html).## Installation
Install the package using [pip](https://en.wikipedia.org/wiki/Pip_(package_manager)) and the following command:
```python
pip install daymetpy
```## Use
Example code to calculate the temperature difference between Denver and Miami is given below. This gives an idea of code functionality and use. A worked example in an ipython notebook format can be found in the 'example' subdirectory.
```python
import sys
import daymetpy
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as pltdenver_loc = (-104.9903, 39.7392)
miami_loc = (-80.2089, 25.7753)denver = daymetpy.daymet_timeseries(lon=denver_loc[0], lat=denver_loc[1], start_year=2012, end_year=2014)
miami = daymetpy.daymet_timeseries(lon=miami_loc[0], lat=miami_loc[1], start_year=2012, end_year=2014)fig, ax1 = plt.subplots(1, figsize=(18, 10))
rolling3day = denver.rolling(15).mean()
ax1.fill_between(rolling3day.index, rolling3day.tmin, rolling3day.tmax,
alpha=0.4, lw=0, label='Denver', color=sns.xkcd_palette(['faded green'])[0])
ax1.set_title('Denver vs Miami temps (15 day mean)', fontsize=20)
rolling3day = miami.rolling(15).mean()
ax1.fill_between(rolling3day.index, rolling3day.tmin, rolling3day.tmax,
alpha=0.4, lw=0, label='Miami', color=sns.xkcd_palette(['dusty purple'])[0])
ax1.set_ylabel(u'Temp. (°C)', fontsize=20)
fig.tight_layout()
plt.legend(fontsize=20)
```## Requirements
Pandas / seaborn are required.## Contributors
* Koen Hufkens: [email protected]
* Colin Talbert