https://github.com/bokeh/bokeh
Interactive Data Visualization in the browser, from Python
https://github.com/bokeh/bokeh
bokeh data-visualisation interactive-plots javascript jupyter notebooks numfocus plots plotting python visualisation visualization
Last synced: 7 months ago
JSON representation
Interactive Data Visualization in the browser, from Python
- Host: GitHub
- URL: https://github.com/bokeh/bokeh
- Owner: bokeh
- License: bsd-3-clause
- Created: 2012-03-26T15:40:01.000Z (over 13 years ago)
- Default Branch: branch-3.8
- Last Pushed: 2025-05-05T13:55:25.000Z (7 months ago)
- Last Synced: 2025-05-05T15:11:27.583Z (7 months ago)
- Topics: bokeh, data-visualisation, interactive-plots, javascript, jupyter, notebooks, numfocus, plots, plotting, python, visualisation, visualization
- Language: TypeScript
- Homepage: https://bokeh.org
- Size: 333 MB
- Stars: 19,820
- Watchers: 434
- Forks: 4,217
- Open Issues: 819
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: LICENSE.txt
- Code of conduct: docs/CODE_OF_CONDUCT.md
- Security: docs/SECURITY.md
Awesome Lists containing this project
- fucking_awesome_python - bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-python-machine-learning - Bokeh - Bokeh is an interactive visualization library for Python that enables beautiful and meaningful visual presentation of data in modern web browsers. With Bokeh, you can quickly and easily create interactive plots, dashboards, and data applications. (Uncategorized / Uncategorized)
- awesome-starred - bokeh - Interactive Data Visualization in the browser, from Python (Python)
- fucking-awesome-python-cn - bokeh
- awesome-starts - bokeh/bokeh - Interactive Data Visualization in the browser, from Python (Python)
- awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- Awesome - Bokeh - Interactive Data Visualization in the browser, from Python. (Multimedia / Image and pictures)
- awesome-python-machine-learning-resources - GitHub - 9% open · ⏱️ 24.08.2022): (数据可视化)
- awesome-robotic-tooling - bokeh - Interactive Data Visualization in the browser, from Python. (Data Visualization and Mission Control / Command Line Interface)
- awesome-production-machine-learning - Bokeh - Bokeh is an interactive visualization library for Python that enables beautiful and meaningful visual presentation of data in modern web browsers. (Industrial Strength Visualisation libraries)
- awesome-robotic-tooling - bokeh - Interactive Data Visualization in the browser, from Python (Interaction / Data Visualization and Mission Control)
- starred-awesome - bokeh - Interactive Web Plotting for Python (Python)
- awesome-list - Bokeh - Interactive Data Visualization in the browser, from Python. (Data Visualization / Data Management)
- awesome-python-zh - bokeh - Python的交互式Web绘图。 (数据可视化)
- awesome-rainmana - bokeh/bokeh - Interactive Data Visualization in the browser, from Python (TypeScript)
- StarryDivineSky - bokeh/bokeh
- awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-python-data-science - Bokeh - Interactive Web Plotting for Python. (Visualization / Interactive plots)
- awesome-production-machine-learning - Bokeh - Bokeh is an interactive visualization library for Python that enables beautiful and meaningful visual presentation of data in modern web browsers. (Industry Strength Visualisation)
- awesomeLibrary - bokeh - Interactive Data Visualization in the browser, from Python (语言资源库 / python)
- awesome-machine-learning - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-machine-learning - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- awesome-list-for-developers - Bokeh - first-issue)_ <br> Bokeh is an interactive visualization library for modern web browsers. (Python / Misc)
- python-awesome - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-machine-learning - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- awesome-starred - bokeh/bokeh - Interactive Data Visualization in the browser, from Python (javascript)
- awesome-jupyter-resources - GitHub - 9% open · ⏱️ 24.08.2022): (交互式小部件和可视化)
- awesome-python-resources - GitHub - 9% open · ⏱️ 24.08.2022): (数据可视化)
- fintech-awesome-libraries - Bokeh - Interactive Web Plotting for Python. (Data Visualization / Interactive plots)
- awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-python - Bokeh - Interactive Data Visualization in the browser, from Python ` 📝 4 days ago ` (Data Visualization [🔝](#readme))
- awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- my-awesome-awesomeness - bokeh
- fucking-awesome-python - bokeh - Interactive Web Plotting for Python. (Data Visualization)
- fucking-awesome-machine-learning - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- awesome-meteo - Bokeh
- fucking-awesome-python - :octocat: Bokeh - :star: 17747 :fork_and_knife: 4112 - Interactive Web Plotting for Python. (Data Visualization)
- awesome-machine-learning - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-machine-learning - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- best-of-jupyter - GitHub - 10% open · ⏱️ 05.11.2025): (Interactive Widgets & Visualization)
- awesome-python-cn - bokeh
- Awesome-Python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- Python-Awesome - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-python - bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-python-data-science - Bokeh - Interactive Web Plotting for Python. (Visualization / Interactive plots)
- awesome-python - bokeh - 3-Clause](https://api.github.com/licenses/bsd-3-clause)- Interactive Web Plotting for Python (Awesome Python / Data Visualization)
- awesome-machine-learning - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- awesome-python-again -
- awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- awesome-advanced-metering-infrastructure - bokeh - Interactive Web Plotting for Python. (Python / General-Purpose Machine Learning)
- awesome-python-data-science - bokeh - Interactive web plotting. (Visualization)
- git-github.com-vinta-awesome-python - Bokeh - Interactive Web Plotting for Python. (Data Visualization)
- my-awesome-starred - bokeh - Interactive Web Plotting for Python (Python)
README

----
[Bokeh](https://bokeh.org) is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics and affords high-performance interactivity across large or streaming datasets. Bokeh can help anyone who wants to create interactive plots, dashboards, and data applications quickly and easily.
Package
Project
Downloads
Build
Community
*Consider [making a donation](https://opencollective.com/bokeh) if you enjoy using Bokeh and want to support its development.*

## Installation
To install Bokeh and its required dependencies using `pip`, enter the following command at a Bash or Windows command prompt:
```
pip install bokeh
```
To install using `conda`, enter the following command at a Bash or Windows command prompt:
```
conda install bokeh
```
Refer to the [installation documentation](https://docs.bokeh.org/en/latest/docs/first_steps/installation.html) for more details.
## Resources
Once Bokeh is installed, check out the [first steps guides](https://docs.bokeh.org/en/latest/docs/first_steps.html#first-steps-guides).
Visit the [full documentation site](https://docs.bokeh.org) to view the [User's Guide](https://docs.bokeh.org/en/latest/docs/user_guide.html) or [checkout the Bokeh tutorial repository](https://github.com/bokeh/tutorial/) to learn about Bokeh in live Jupyter Notebooks.
Community support is available on the [Project Discourse](https://discourse.bokeh.org).
If you would like to contribute to Bokeh, please review the [Contributor Guide](https://docs.bokeh.org/en/latest/docs/dev_guide.html) and [request an invitation to the Bokeh Dev Slack workspace](https://slack-invite.bokeh.org/).
*Note: Everyone who engages in the Bokeh project's discussion forums, codebases, and issue trackers is expected to follow the [Code of Conduct](https://github.com/bokeh/bokeh/blob/HEAD/docs/CODE_OF_CONDUCT.md).*
## Support
### Fiscal Support
The Bokeh project is grateful for [individual contributions](https://opencollective.com/bokeh), as well as for present and past monetary support from the organizations and companies listed below:
If your company uses Bokeh and is able to sponsor the project, please contact info@bokeh.org
*Bokeh is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides Bokeh with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit [numfocus.org](https://numfocus.org) for more information.*
*Donations to Bokeh are managed by NumFOCUS. For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax adviser about your particular tax situation.*
### In-kind Support
Non-monetary support can help with development, collaboration, infrastructure, security, and vulnerability management. The Bokeh project is grateful to the following companies for their donation of services:
* [Amazon Web Services](https://aws.amazon.com/)
* [GitGuardian](https://gitguardian.com/)
* [GitHub](https://github.com/)
* [makepath](https://makepath.com/)
* [Pingdom](https://www.pingdom.com/website-monitoring)
* [Slack](https://slack.com)
* [QuestionScout](https://www.questionscout.com/)
* [1Password](https://1password.com/)