Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/borda/kaggle_image-segm
Simple tooling for instance segmentation aiming at cell biology...
https://github.com/borda/kaggle_image-segm
cell-biology deep-learning image-recognition instance-segmentation kaggle
Last synced: 11 days ago
JSON representation
Simple tooling for instance segmentation aiming at cell biology...
- Host: GitHub
- URL: https://github.com/borda/kaggle_image-segm
- Owner: Borda
- License: mit
- Created: 2021-10-16T18:24:03.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-10-07T19:06:48.000Z (about 1 month ago)
- Last Synced: 2024-10-23T17:16:15.942Z (21 days ago)
- Topics: cell-biology, deep-learning, image-recognition, instance-segmentation, kaggle
- Language: Jupyter Notebook
- Homepage:
- Size: 3.02 MB
- Stars: 10
- Watchers: 3
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Kaggle: Image Segmentation
[![CI complete testing](https://github.com/Borda/kaggle_image-segm/actions/workflows/ci_testing.yml/badge.svg?branch=main&event=push)](https://github.com/Borda/kaggle_image-segm/actions/workflows/ci_testing.yml)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Borda/kaggle_image-segm/main.svg)](https://results.pre-commit.ci/latest/github/Borda/kaggle_image-segm/main)
[![codecov](https://codecov.io/gh/Borda/kaggle_image-segm/branch/main/graph/badge.svg)](https://codecov.io/gh/Borda/kaggle_image-segm)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/Borda/kaggle_image-segm/main.svg)](https://results.pre-commit.ci/latest/github/Borda/kaggle_image-segm/main)### install this tooling
A simple way how to use this basic functions:
```bash
! pip install https://github.com/Borda/kaggle_image-segm/archive/refs/heads/main.zip
```## Kaggle: [Tract Image Segmentation](https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation)
The goal of this challenge is to segment organs in medical scans to improve cancer treatment
![Sample organs visual](./assets/tract-annot.png)
### run notebooks in Kaggle
- [Tract🩻Segm: EDA 🔎 & 3D🗄️data browser](https://www.kaggle.com/code/jirkaborovec/tract-segm-eda-3d-data-browser)
- [Tract🩻Segm: Statistic⚖️predictions](https://www.kaggle.com/code/jirkaborovec/tract-segm-statistic-predictions)
- [Tract🩻Segm: EDA 🔎 & baseline Flash⚡DeepLab-v3 & albumentations](https://www.kaggle.com/code/jirkaborovec/tract-segm-eda-baseline-flash-deeplab-v3)
- [](<>)### local notebooks
- [Tract segmentation with pure statistic](./notebooks/Tract-segm_statistic-predictions.ipynb)
- [Tract segmentation: EDA, baseline with Flash & DeepLab-v3](./notebooks/Tract-segm_EDA-baseline-Flash-DeepLab-v3.ipynb)
- [](<>)### some results
Training progress with ResNext50 with training for 20 epochs > over 0.80 validation IoU:
![Training process](./assets/tract-segm_metrics.png)
## Kaggle: [Cell Instance Segmentation](https://www.kaggle.com/c/sartorius-cell-instance-segmentation)
The goal of this challenge is to detect cells in microscope images.
![Sample cells visual](./assets/cells-annot.png)
### run notebooks in Kaggle
- [🦠Cell Instance Segm: 🔍 interactive data browsing](https://www.kaggle.com/jirkaborovec/cell-instance-segm-interactive-data-browsing)
- [🦠Cell Instance Segm. ~ Lightning⚡Flash](https://www.kaggle.com/jirkaborovec/cell-instance-segm-lightning-flash)