Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/boredbird/woe
Tools for WoE Transformation mostly used in ScoreCard Model for credit rating
https://github.com/boredbird/woe
credit-scoring iv machine-learning scorecard woe
Last synced: 3 months ago
JSON representation
Tools for WoE Transformation mostly used in ScoreCard Model for credit rating
- Host: GitHub
- URL: https://github.com/boredbird/woe
- Owner: boredbird
- License: mit
- Created: 2017-09-11T07:15:04.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2019-10-29T03:39:46.000Z (over 5 years ago)
- Last Synced: 2023-09-15T06:10:01.691Z (over 1 year ago)
- Topics: credit-scoring, iv, machine-learning, scorecard, woe
- Language: Python
- Size: 6.72 MB
- Stars: 249
- Watchers: 26
- Forks: 104
- Open Issues: 11
-
Metadata Files:
- Readme: README.rst
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-production-machine-learning - woe - Tools for WoE Transformation mostly used in ScoreCard Model for credit rating (Explaining Black Box Models and Datasets)
- Awesome-AIML-Data-Ops - woe - Tools for WoE Transformation mostly used in ScoreCard Model for credit rating (Explaining Black Box Models and Datasets)
- awesome-production-machine-learning - woe - Tools for WoE Transformation mostly used in ScoreCard Model for credit rating (Explainability and Fairness)
README
woe
===.. image:: https://travis-ci.org/justdoit0823/pywxclient.svg?branch=master
:target: https://travis-ci.org/justdoit0823/pywxclientversion: 0.1.4
Tools for WoE Transformation mostly used in ScoreCard Model for credit rating
Installation
--------------------------------We can simply use pip to install, as the following:
.. code-block:: bash
$ pip install woe
or installing from git
.. code-block:: bash
$ pip install git+https://github.com/boredbird/woe
Features
========* Split tree with IV criterion
* Rich and plentiful model eval methods
* Unified format and easy for output
* Storage of IV tree for follow-up use
**woe** module function tree
============================::
|- __init__
|- config.py
| |-- config
| |-- __init__
| |-- change_config_var_dtype()
| |-- load_file()
|- eval.py
| |-- compute_ks()
| |-- eval_data_summary()
| |-- eval_feature_detail()
| |-- eval_feature_stability()
| |-- eval_feature_summary()
| |-- eval_model_stability()
| |-- eval_model_summary()
| |-- eval_segment_metrics()
| |-- plot_ks()
| |-- proc_cor_eval()
| |-- proc_validation()
| |-- wald_test()
|- feature_process.py
| |-- binning_data_split()
| |-- calculate_iv_split()
| |-- calulate_iv()
| |-- change_feature_dtype()
| |-- check_point()
| |-- fillna()
| |-- format_iv_split()
| |-- proc_woe_continuous()
| |-- proc_woe_discrete()
| |-- process_train_woe()
| |-- process_woe_trans()
| |-- search()
| |-- woe_trans()
|- ftrl.py
| |-- FTRL()
| |-- LR()
|- GridSearch.py
| |-- fit_single_lr()
| |-- grid_search_lr_c()
| |-- grid_search_lr_c_main()
| |-- grid_search_lr_validation()Examples
========In the examples directory, there is a simple woe transformation program as tutorials.
Or you can write a more complex program with this `woe` package.
Version Records
================
woe 0.1.4 2018-03-01
* support py3woe 0.1.3 2018-02-09
* woe.feature_process.proc_woe_discrete(): fix bug when deal with discrete varibales
* woe.eval.eval_feature_detail(): fix bug : utf-8 output file format
* woe.GridSearch.grid_search_lr_c_main(): add function warper for convenience and high efficiency
* woe.GridSearch.grid_search_lr_c_validation(): monitor the ks performance of training sets and test sets on different 'c'
* supplement examples test scriptswoe 0.1.2 2017-12-05
* woe.ftrl.FTRL(): add online learning module
woe 0.1.1 2017-11-28
* woe.config.load_file(): change param data_path to be optional
* woe.eval.eval_feature_stability(): fix bug : psi_dict['stability_index'] computation error
* woe.feature_process.change_feature_dtype(): add friendly tips when encounter a error
* woe.feature_process.calulate_iv(): refactor the code
* woe.feature_process.calculate_iv_split(): refactor the code
* woe.feature_process.binning_data_split(): reduce the number of len() function calls with __len__() and shape attributes;replace namedtuple with dict
* woe.feature_process.fillna(): new added function to fill null value
* woe.GridSearch.grid_search_lr_c(): list of regularization parameter c specified inside the function is changed to the user specified
woe 0.0.9 2017-11-21* Add module : GridSearch for the search of optimal hyper parametric C in LogisticRegression
* Code refactoring: function compute_ks and plot_kswoe 0.0.8 2017-09-28
* More flexible: cancel conditional restriction in function feature_process.change_feature_dtype()
* Fix bug: the wrong use of deepcopy in function feature_process.woe_trans()
woe 0.0.7 2017-09-19* Fix bug: eval.eval_feature_detail raises ValueError('arrays must all be same length')
* Add parameter interface: alpha specified step learning rate ,default 0.01How to Contribute
--------------------------------Email me,[email protected].