An open API service indexing awesome lists of open source software.

https://github.com/borisbolliet/scatteringtransformtutorials

Tutorials to learn the amazing scattering transform
https://github.com/borisbolliet/scatteringtransformtutorials

Last synced: 6 months ago
JSON representation

Tutorials to learn the amazing scattering transform

Awesome Lists containing this project

README

          

# ScatteringTransformTutorials

Current tutorials include:

- [learning_scattering_transforms_1d](https://github.com/borisbolliet/ScatteringTransformTutorials/blob/main/learning_scattering_transforms_1d.ipynb)

First, watch

- [Stéphane Mallat 1: Mathematical Mysteries of Deep Neural Networks](https://www.youtube.com/watch?v=0wRItoujFTA),
- [Stéphane Mallat 2: Mathematical Mysteries of Deep Neural Networks](https://www.youtube.com/watch?v=kZkjb52zh5k).

Slides are stored here ([part 1](https://github.com/borisbolliet/ScatteringTransformTutorials/blob/main/CadixCours2016_partA.pdf), [part 2](https://github.com/borisbolliet/ScatteringTransformTutorials/blob/main/CadixCours2016_partB.pdf)).

Then, study these tutorial notebooks to learn about the amazing scattering transform.

Seminal references include:

- [Mallat (2012)](https://arxiv.org/abs/1101.2286) [signal processing, functional analysis]
- [Bruna & Mallat (2012)](https://arxiv.org/abs/1203.1513) [signal processing, image recognition]
- [Anden & Mallat (2014)](https://arxiv.org/pdf/1304.6763) [signal processing, audio classification]
- [Allys et al (2019)](https://arxiv.org/abs/1905.01372) [astrophysics]
- [Regaldo-Saint Blancard et al (2021)](https://arxiv.org/abs/2102.03160) [astrophysics]
- [Morel et al (2022)](https://arxiv.org/abs/2204.10177) [finance]
- [Cheng et al (2023)](https://arxiv.org/pdf/2306.17210) [physics]

Very useful material include the PhD thesis of

- [Irène Waldspurger (2015)](https://theses.hal.science/tel-01770221v1/file/Waldspurger-2015-These.pdf)
- [Vincent Lonstalent (2017)](https://theses.hal.science/tel-01559667/file/LOSTANLEN_2017_diffusion.pdf)

Solves and builds upon tutorials found in:

- [kymatio](https://www.kymat.io)
- [cyrusvahidi/scat1d-tutorial](https://github.com/cyrusvahidi/scat1d-tutorial)
- [SihaoCheng/scattering_transform](https://github.com/SihaoCheng/scattering_transform)
- [RudyMorel/scattering_spectra](https://github.com/RudyMorel/scattering_spectra)

Run on GPUs, if you can.

Useful ressource: [deeplearning-math.github.io](https://deeplearning-math.github.io)