https://github.com/bpesquet/pytorch-tutorial
Concise and annotated examples for learning the basics of PyTorch
https://github.com/bpesquet/pytorch-tutorial
pytorch tutorial
Last synced: 10 months ago
JSON representation
Concise and annotated examples for learning the basics of PyTorch
- Host: GitHub
- URL: https://github.com/bpesquet/pytorch-tutorial
- Owner: bpesquet
- License: other
- Created: 2025-01-06T15:31:08.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2025-04-14T13:33:48.000Z (10 months ago)
- Last Synced: 2025-04-14T14:49:44.109Z (10 months ago)
- Topics: pytorch, tutorial
- Language: Python
- Homepage:
- Size: 809 KB
- Stars: 0
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# (Yet another) PyTorch Tutorial


[](https://github.com/psf/black)

This repository provides concise and annotated examples for learning the basics of [PyTorch](https://pytorch.org).
> [About this project](ABOUT.md)
## Table of Contents
- [Fundamentals](pytorch_tutorial/fundamentals/)
- [Linear Regression](pytorch_tutorial/linear_regression/)
- [Logistic Regression](pytorch_tutorial/logistic_regression/)
- [MultiLayer Perceptron](pytorch_tutorial/multilayer_perceptron/)
- [Convolutional Neural Network](pytorch_tutorial/convolutional_neural_network/)
- ... (more to come)
## Usage
```bash
git clone https://github.com/bpesquet/pytorch-tutorial.git
cd pytorch-tutorial
poetry install
python {path to Python example file}
```
## Development notes
### Toolchain
This project is built with the following software:
- [Poetry](https://python-poetry.org/) for dependency management;
- [Black](https://github.com/psf/black) for code formatting;
- [Pylint](https://github.com/pylint-dev/pylint) to detect mistakes in the codebase;
- [pytest](https://docs.pytest.org) for testing examples;
- a [GitHub Action](.github/workflows/ci.yaml) for validating the code upon each push;
- [Marp](https://marp.app/) for showcasing `README` files as slideshows during lectures or labs.
### Useful commands
```bash
# Reformat all Python files
black .
# Check the codebase for mistakes
pylint pytorch_tutorial/*
# Run all code examples as unit tests
# The optional -s flag prints code output
pytest [-s]
```
## License
[Creative Commons](LICENSE) for textual content and [MIT](CODE_LICENSE) for code.
Copyright © 2025-present [Baptiste Pesquet](https://bpesquet.fr).