Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/brandmaier/semtree
Recursive Partitioning for Structural Equation Models
https://github.com/brandmaier/semtree
bigdata cran decision-tree forest multivariate r randomforest recursive-partitioning sem statistical-modeling structural-equation-modeling structural-equation-models
Last synced: about 14 hours ago
JSON representation
Recursive Partitioning for Structural Equation Models
- Host: GitHub
- URL: https://github.com/brandmaier/semtree
- Owner: brandmaier
- License: gpl-3.0
- Created: 2016-12-16T11:43:51.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2024-10-01T18:08:26.000Z (about 1 month ago)
- Last Synced: 2024-10-28T17:24:38.464Z (11 days ago)
- Topics: bigdata, cran, decision-tree, forest, multivariate, r, randomforest, recursive-partitioning, sem, statistical-modeling, structural-equation-modeling, structural-equation-models
- Language: R
- Homepage: https://brandmaier.github.io/semtree/
- Size: 30.3 MB
- Stars: 13
- Watchers: 4
- Forks: 11
- Open Issues: 21
-
Metadata Files:
- Readme: README.Rmd
- License: LICENSE.md
Awesome Lists containing this project
README
---
title: "Read Me"
output: md_document
---semtree
======```{r echo=FALSE}
knitr::opts_chunk$set(
comment = "#>",
collapse = TRUE
)
```[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1116294.svg)](https://doi.org/10.5281/zenodo.1116294)
[![cran version](http://www.r-pkg.org/badges/version/semtree)](https://cran.r-project.org/package=semtree)
[![rstudio mirror downloads](http://cranlogs.r-pkg.org/badges/semtree)](https://github.com/r-hub/cranlogs.app)
[![R-CMD-check](https://github.com/brandmaier/semtree/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/brandmaier/semtree/actions/workflows/R-CMD-check.yaml)
![Code size](https://img.shields.io/github/languages/code-size/brandmaier/semtree.svg)
![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/semtree)![contributions](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat)
[![License: GPL v3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)## What is this?
An R package for estimating Structural Equation Model (SEM) Trees and Forests. They are a fusion of SEM and decision trees, or SEM and random forests respectively. While SEM is a confirmatory modeling technique, SEM trees and forests allow to explore whether there are predictors that provide further information about an initial, theory-based model. Potential use cases are the search for potential predictors that explain individual differences, finding omitted variables in a model, or exploring measurement invariance over a large set of predictors. A recent overview is in our latest book chapter in the SEM handbook (Brandmaier & Jacobucci, 2023).
## Install
Install the latest stable version from CRAN:
```{r eval=FALSE}
install.packages("semtree")
```To install the latest semtree package directly from GitHub, copy the following line into R:
```{r, eval=FALSE}
library(devtools)
devtools::install_github("brandmaier/semtree")# even better: install with package vignette (extra documentation)
devtools::install_github("brandmaier/semtree",force=TRUE, build_opts = c())
```## Usage
Package documentation and use-cases with runnable R code can be found on our github pages: [https://brandmaier.github.io/semtree/](https://brandmaier.github.io/semtree/).
Package vignettes (shipped with the package) contain documentation on how to use the package. Simply type this in R once you have loaded the package:
```{r eval=FALSE}
browseVignettes("semtree")
```## References
Theory and method:
- Brandmaier, A. M., & Jacobucci, R. C. (2023). Machine-learning approaches to structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (2nd rev. ed., pp. 722–739). Guilford Press.
- Arnold, M., Voelkle, M.C., and Brandmaier, A.M. (2021). Score-guided structural equation model trees. _Frontiers in psychology_, 11, 564403.
- Brandmaier, A. M., Driver, C., & Voelkle, M. C. (2019). Recursive partitioning in continuous time analysis. In K. van Montfort, J. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences. New York: Springer.
- Brandmaier, A. M., Prindle, J. J., McArdle, J. J., & Lindenberger, U. (2016). Theory-guided exploration with structural equation model forests. _Psychological Methods_, 21, 566-582. \doi{doi:10.1037/met0000090}
- Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2014). Exploratory data mining with structural equation model trees. In J. J. McArdle & G. Ritschard (Eds.), Contemporary issues in exploratory data mining in the behavioral sciences (pp. 96-127). New York: Routledge.
- Brandmaier, A. M., von Oertzen, T., McArdle, J. J., & Lindenberger, U. (2013). Structural equation model trees. _Psychological Methods_, 18, 71-86. \doi{doi:10.1037/a0030001}
Applied examples (there are many more):
Brandmaier, A. M., Ram, N., Wagner, G. G., & Gerstorf, D. (2017). Terminal decline in well-being: The role of multi-indicator constellations of physical health and psychosocial correlates. Developmental Psychology.