Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/brosnanyuen/raybnn_optimizer

Gradient Descent Optimizers and Genetic Algorithms using GPUs, CPUs, and FPGAs via CUDA, OpenCL, and oneAPI
https://github.com/brosnanyuen/raybnn_optimizer

arrayfire cuda genetic-algorithm genetic-algorithms gpu gpu-computing gradient gradient-descent parallel parallel-computing raybnn rust

Last synced: 2 months ago
JSON representation

Gradient Descent Optimizers and Genetic Algorithms using GPUs, CPUs, and FPGAs via CUDA, OpenCL, and oneAPI

Awesome Lists containing this project

README

        

# RayBNN_Optimizer

Gradient Descent Optimizers and Genetic Algorithms using GPUs, CPUs, and FPGAs via CUDA, OpenCL, and oneAPI

* ADAM
* SGD
* Genetic
* Random Search

# Install Arrayfire

Install the Arrayfire 3.9.0 binaries at [https://arrayfire.com/binaries/](https://arrayfire.com/binaries/)

or build from source
[https://github.com/arrayfire/arrayfire/wiki/Getting-ArrayFire](https://github.com/arrayfire/arrayfire/wiki/Getting-ArrayFire)

# Add to Cargo.toml
```
arrayfire = { version = "3.8.1", package = "arrayfire_fork" }
rayon = "1.10.0"
num = "0.4.3"
num-traits = "0.2.19"
half = { version = "2.4.1" , features = ["num-traits"] }
RayBNN_Optimizer = "2.0.1"
```

# List of Examples

# Optimizing values for a loss function
```

//Define Starting Point for optimization
let x0_cpu = vec![0.1, 0.4, 0.5, -1.2, 0.7];
let x0_dims = arrayfire::Dim4::new(&[1, x0_cpu.len() as u64, 1, 1]);
let x0 = arrayfire::Array::new(&x0_cpu, x0_dims);

//Define the loss function
let y_cpu = vec![-1.1, 0.4, 2.0, 2.1, 4.0];
let y = arrayfire::Array::new(&y_cpu, x0_dims);

//Define the loss function
let loss = |yhat: &arrayfire::Array| -> arrayfire::Array {
RayBNN_Optimizer::Continuous::Loss::MSE(yhat, &y)
};

//Define the gradient of the loss function
let loss_grad = |yhat: &arrayfire::Array| -> arrayfire::Array {
RayBNN_Optimizer::Continuous::Loss::MSE_grad(yhat, &y)
};

let mut point = x0.clone();
let mut direction = -loss_grad(&point);
let mut mt = arrayfire::constant::(0.0,direction.dims());
let mut vt = arrayfire::constant::(0.0,direction.dims());

let single_dims = arrayfire::Dim4::new(&[1,1,1,1]);
let mut alpha = arrayfire::constant::(1.0,single_dims);

let alpha_max = arrayfire::constant::(1.0,single_dims);

let rho = arrayfire::constant::(0.1,single_dims);

//Create alpha values to sweep through
let v = 30;
let alpha_vec = RayBNN_Optimizer::Continuous::LR::create_alpha_vec::(v, 1.0, 0.5);

let beta0 = arrayfire::constant::(0.9,single_dims);
let beta1 = arrayfire::constant::(0.999,single_dims);

//Optimization Loop
for i in 0..120
{
alpha = alpha_max.clone();
//Automatically Determine Optimal Step Size using BTLS
RayBNN_Optimizer::Continuous::LR::BTLS(
loss
,loss_grad
,&point
,&direction
,&alpha_vec
,&rho
,&mut alpha
);

//Update current point
point = point.clone() + alpha*direction.clone();
direction = -loss_grad(&point);

//Use ADAM optimizer
RayBNN_Optimizer::Continuous::GD::adam(
&beta0
,&beta1
,&mut direction
,&mut mt
,&mut vt
);

}

```

# Types of Loss Functions
```
let mut cross_entropy = RayBNN_Optimizer::Continuous::Loss::softmax_cross_entropy(&Yhat,&Y);
let mut cross_entropy_grad = RayBNN_Optimizer::Continuous::Loss::softmax_cross_entropy_grad(&Yhat,&Y);
let mut cross_entropy = RayBNN_Optimizer::Continuous::Loss::sigmoid_cross_entropy(&Yhat,&Y);
let mut cross_entropy_grad = RayBNN_Optimizer::Continuous::Loss::sigmoid_cross_entropy_grad(&Yhat,&Y);
let mut MAE = RayBNN_Optimizer::Continuous::Loss::MAE(&Yhat,&Y);
let mut MSE = RayBNN_Optimizer::Continuous::Loss::MSE(&Yhat,&Y);
let MSE_grad = RayBNN_Optimizer::Continuous::Loss::MSE_grad(&Yhat,&Y);
let mut RMSE = RayBNN_Optimizer::Continuous::Loss::RMSE(&Yhat,&Y);
```