Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/brpy/ml-books
A list of freely available Machine Learning related books.
https://github.com/brpy/ml-books
books data-science free freely machine-learning statistics
Last synced: 3 days ago
JSON representation
A list of freely available Machine Learning related books.
- Host: GitHub
- URL: https://github.com/brpy/ml-books
- Owner: brpy
- License: mit
- Created: 2020-05-11T06:28:57.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-12-31T20:13:01.000Z (almost 4 years ago)
- Last Synced: 2024-11-05T10:12:06.956Z (about 2 months ago)
- Topics: books, data-science, free, freely, machine-learning, statistics
- Homepage:
- Size: 5.86 KB
- Stars: 23
- Watchers: 2
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ml-books
A list of freely available Machine Learning, Data Science and Statistics books.| Book/Resource| Author(s) | Links|:arrow_double_down:|
|-----------|----------------------------|-----------------------------------------------|---|
| d2l-ai| Community | [[github]](https://github.com/d2l-ai/d2l-en) [[pdf]](https://d2l.ai/d2l-en.pdf)|:heavy_check_mark:|
| Data Science Handbook| Jake Vanderplas | [[github]](https://github.com/jakevdp/PythonDataScienceHandbook) [[online]](https://jakevdp.github.io/PythonDataScienceHandbook/)|:x:|
| Deep Learning Book| Ian Goodfellow, Yoshua Bengio, Aaron Courville | [[online]](https://www.deeplearningbook.org/)|:x:|
| Deep Learning with Pytorch|Eli Stevens, Luca Antiga, Thomas Viehmann| [[pdf]](https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf)|:heavy_check_mark:|
| Introdution to Probability| Jessica Hwang and Joseph K. Blitzstein | [[Google Drive]](https://drive.google.com/file/d/1VmkAAGOYCTORq1wxSQqy255qLJjTNvBI/view)|:x:|
|Ml Primer|Mihail Eric| [[pdf]](https://www.confetti.ai/assets/ml-primer/ml_primer.pdf) |:heavy_check_mark:|
|Mathematics For Machine Learning|Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong|[[github]](https://github.com/mml-book/mml-book.github.io) [[pdf]](https://mml-book.github.io/book/mml-book.pdf)|:heavy_check_mark:|
|Foundations of Data Science|Avrim Blum, John Hopcroft, Ravindran Kannan| [[pdf]](https://www.cs.cornell.edu/jeh/book.pdf)|:heavy_check_mark:|
|Think Stats|Allen Downey|[[github]](https://github.com/AllenDowney/ThinkStats2) [[pdf]](https://greenteapress.com/thinkstats/thinkstats.pdf)|:heavy_check_mark:|
|Math4ml|Garrett Thomas|[[github]](https://github.com/gwthomas/math4ml) [[pdf]](https://gwthomas.github.io/docs/math4ml.pdf)|:heavy_check_mark:|
|Think bayes|Allen Downey|[[github]](https://github.com/AllenDowney/ThinkBayes) [[html]](http://www.greenteapress.com/thinkbayes/html/index.html) [[pdf]](http://www.greenteapress.com/thinkbayes/thinkbayes.pdf)|:heavy_check_mark:|
|Think python 2|Allen Downey|[[pdf]](http://greenteapress.com/thinkpython2/thinkpython2.pdf)|:heavy_check_mark:|
|Intermediate python|Muhammad Yasoob Ullah Khalid|[[pdf]](https://buildmedia.readthedocs.org/media/pdf/intermediatepythongithubio/latest/intermediatepythongithubio.pdf)|:heavy_check_mark:|
|Pattern Recognition and Machine Learning|Christopher Bishop|[[pdf]](https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf)|:heavy_check_mark:|
|Computer Age Statistical Inference|Bradley Efron, Trevor Hastie|[[pdf]](https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf)|:heavy_check_mark:|
|An Introduction to Statistical Learning|Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani|[[pdf]](https://statlearning.com/ISLR%20Seventh%20Printing.pdf)|:heavy_check_mark:|
|The Elements ofStatistical Learning|Trevor Hastie, Robert Tibshirani, Jerome Friedman|[[pdf]](https://web.stanford.edu/~hastie/Papers/ESLII.pdf)|:heavy_check_mark:|