Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bryandlee/animegan2-pytorch
PyTorch implementation of AnimeGANv2
https://github.com/bryandlee/animegan2-pytorch
gan image2image style-transfer
Last synced: 1 day ago
JSON representation
PyTorch implementation of AnimeGANv2
- Host: GitHub
- URL: https://github.com/bryandlee/animegan2-pytorch
- Owner: bryandlee
- License: mit
- Created: 2021-02-16T11:34:21.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2023-01-06T10:26:08.000Z (about 2 years ago)
- Last Synced: 2025-01-03T03:03:00.438Z (9 days ago)
- Topics: gan, image2image, style-transfer
- Language: Jupyter Notebook
- Homepage:
- Size: 37.6 MB
- Stars: 4,411
- Watchers: 59
- Forks: 643
- Open Issues: 36
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome - bryandlee/animegan2-pytorch - PyTorch implementation of AnimeGANv2 (Jupyter Notebook)
- StarryDivineSky - bryandlee/animegan2-pytorch
README
## PyTorch Implementation of [AnimeGANv2](https://github.com/TachibanaYoshino/AnimeGANv2)
**Updates**
* `2021-10-17` Add weights for [FacePortraitV2](#additional-model-weights). [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/bryandlee/animegan2-pytorch/blob/main/colab_demo.ipynb)
![sample](https://user-images.githubusercontent.com/26464535/142294796-54394a4a-a566-47a1-b9ab-4e715b901442.gif)
* `2021-11-07` Thanks to [ak92501](https://twitter.com/ak92501), a [web demo](https://huggingface.co/spaces/akhaliq/AnimeGANv2) is integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/AnimeGANv2)
* `2021-11-07` Thanks to [xhlulu](https://github.com/xhlulu), the `torch.hub` model is now available. See [Torch Hub Usage](#torch-hub-usage).
## Basic Usage**Inference**
```
python test.py --input_dir [image_folder_path] --device [cpu/cuda]
```## Torch Hub Usage
You can load the model via `torch.hub`:
```python
import torch
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator").eval()
out = model(img_tensor) # BCHW tensor
```Currently, the following `pretrained` shorthands are available:
```python
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="celeba_distill")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v2")
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", pretrained="paprika")
```You can also load the `face2paint` util function:
```python
from PIL import Imageface2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", size=512)
img = Image.open(...).convert("RGB")
out = face2paint(model, img)
```
More details about `torch.hub` is in [the torch docs](https://pytorch.org/docs/stable/hub.html)## Weight Conversion from the Original Repo (Tensorflow)
1. Install the [original repo's dependencies](https://github.com/TachibanaYoshino/AnimeGANv2#requirements): python 3.6, tensorflow 1.15.0-gpu
2. Install torch >= 1.7.1
3. Clone the original repo & run
```
git clone https://github.com/TachibanaYoshino/AnimeGANv2
python convert_weights.py
```samples
Results from converted `Paprika` style model (input image, original tensorflow result, pytorch result from left to right)
**Note:** Results from converted weights slightly different due to the [bilinear upsample issue](https://github.com/pytorch/pytorch/issues/10604)## Additional Model Weights
**Webtoon Face** [[ckpt]](https://drive.google.com/file/d/10T6F3-_RFOCJn6lMb-6mRmcISuYWJXGc)
samples
Trained on 256x256 face images. Distilled from [webtoon face model](https://github.com/bryandlee/naver-webtoon-faces/blob/master/README.md#face2webtoon) with L2 + VGG + GAN Loss and CelebA-HQ images.
![face_results](https://user-images.githubusercontent.com/26464535/143959011-1740d4d3-790b-4c4c-b875-24404ef9c614.jpg)
**Face Portrait v1** [[ckpt]](https://drive.google.com/file/d/1WK5Mdt6mwlcsqCZMHkCUSDJxN1UyFi0-)
samples
Trained on 512x512 face images.
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jCqcKekdtKzW7cxiw_bjbbfLsPh-dEds?usp=sharing)
![samples](https://user-images.githubusercontent.com/26464535/127134790-93595da2-4f8b-4aca-a9d7-98699c5e6914.jpg)[📺](https://youtu.be/CbMfI-HNCzw?t=317)
![sample](https://user-images.githubusercontent.com/26464535/129888683-98bb6283-7bb8-4d1a-a04a-e795f5858dcf.gif)**Face Portrait v2** [[ckpt]](https://drive.google.com/uc?id=18H3iK09_d54qEDoWIc82SyWB2xun4gjU)
samples
Trained on 512x512 face images. Compared to v1, `🔻beautify` `🔺robustness`
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jCqcKekdtKzW7cxiw_bjbbfLsPh-dEds?usp=sharing)
![face_portrait_v2_0](https://user-images.githubusercontent.com/26464535/137619176-59620b59-4e20-4d98-9559-a424f86b7f24.jpg)![face_portrait_v2_1](https://user-images.githubusercontent.com/26464535/137619181-a45c9230-f5e7-4f3c-8002-7c266f89de45.jpg)
🦑 🎮 🔥
![face_portrait_v2_squid_game](https://user-images.githubusercontent.com/26464535/137619183-20e94f11-7a8e-4c3e-9b45-378ab63827ca.jpg)