Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bubbliiiing/yolov4-keras
这是一个YoloV4-keras的源码,可以用于训练自己的模型。
https://github.com/bubbliiiing/yolov4-keras
Last synced: 3 months ago
JSON representation
这是一个YoloV4-keras的源码,可以用于训练自己的模型。
- Host: GitHub
- URL: https://github.com/bubbliiiing/yolov4-keras
- Owner: bubbliiiing
- License: mit
- Created: 2020-05-11T14:41:53.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-07-09T09:04:48.000Z (over 1 year ago)
- Last Synced: 2024-06-16T11:33:59.110Z (5 months ago)
- Language: Python
- Size: 5.5 MB
- Stars: 493
- Watchers: 13
- Forks: 186
- Open Issues: 65
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - bubbliiiing/yolov4-keras - keras?style=social"/> : 这是一个YoloV4-keras的源码,可以用于训练自己的模型。 (Other Versions of YOLO)
- awesome-yolo-object-detection - bubbliiiing/yolov4-keras - keras?style=social"/> : 这是一个YoloV4-keras的源码,可以用于训练自己的模型。 (Other Versions of YOLO)
README
## YOLOV4:You Only Look Once目标检测模型在Keras当中的实现
---## 目录
1. [仓库更新 Top News](#仓库更新)
2. [相关仓库 Related code](#相关仓库)
3. [性能情况 Performance](#性能情况)
4. [实现的内容 Achievement](#实现的内容)
5. [所需环境 Environment](#所需环境)
6. [文件下载 Download](#文件下载)
7. [训练步骤 How2train](#训练步骤)
8. [预测步骤 How2predict](#预测步骤)
9. [评估步骤 How2eval](#评估步骤)
10. [参考资料 Reference](#Reference)## Top News
**`2022-04`**:**支持多GPU训练,新增各个种类目标数量计算,新增heatmap。****`2022-03`**:**进行了大幅度的更新,修改了loss组成,使得分类、目标、回归loss的比例合适、支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪。**
BiliBili视频中的原仓库地址为:https://github.com/bubbliiiing/yolov4-keras/tree/bilibili**`2021-10`**:**进行了大幅度的更新,增加了大量注释、增加了大量可调整参数、对代码的组成模块进行修改、增加fps、视频预测、批量预测等功能。**
## 相关仓库
| 模型 | 路径 |
| :----- | :----- |
YoloV3 | https://github.com/bubbliiiing/yolo3-keras
Efficientnet-Yolo3 | https://github.com/bubbliiiing/efficientnet-yolo3-keras
YoloV4 | https://github.com/bubbliiiing/yolov4-keras
YoloV4-tiny | https://github.com/bubbliiiing/yolov4-tiny-keras
Mobilenet-Yolov4 | https://github.com/bubbliiiing/mobilenet-yolov4-keras
YoloV5-V5.0 | https://github.com/bubbliiiing/yolov5-keras
YoloV5-V6.1 | https://github.com/bubbliiiing/yolov5-v6.1-keras
YoloX | https://github.com/bubbliiiing/yolox-keras
YoloV7 | https://github.com/bubbliiiing/yolov7-keras
Yolov7-tiny | https://github.com/bubbliiiing/yolov7-tiny-keras## 性能情况
| 训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
| :-----: | :-----: | :------: | :------: | :------: | :-----: |
| VOC07+12+COCO | [yolo4_voc_weights.h5](https://github.com/bubbliiiing/yolov4-keras/releases/download/v1.0/yolo4_voc_weights.h5) | VOC-Test07 | 416x416 | - | 88.9
| COCO-Train2017 | [yolo4_weight.h5](https://github.com/bubbliiiing/yolov4-keras/releases/download/v1.0/yolo4_weight.h5) | COCO-Val2017 | 416x416 | 46.4 | 70.5## 实现的内容
- [x] 主干特征提取网络:DarkNet53 => CSPDarkNet53
- [x] 特征金字塔:SPP,PAN
- [x] 训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减
- [x] 激活函数:使用Mish激活函数
- [ ] ……balabla## 所需环境
tensorflow-gpu==1.13.1
keras==2.1.5## 文件下载
训练所需的yolo4_weights.h5可在百度网盘中下载。
链接: https://pan.baidu.com/s/1zAChN3AdrjbnGoJMXdgEYA
提取码: 3zwj
yolo4_weights.h5是coco数据集的权重。
yolo4_voc_weights.h5是voc数据集的权重。VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/19Mw2u_df_nBzsC2lg20fQA
提取码: j5ge## 训练步骤
### a、训练VOC07+12数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录**2. 数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。3. 开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。### b、训练自己的数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要自己制作好数据集,**
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。2. 数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
```python
cat
dog
...
```
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。3. 开始网络训练
**训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。**
**classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!**
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。## 预测步骤
### a、使用预训练权重
1. 下载完库后解压,在百度网盘下载yolo_weights.pth,放入model_data,运行predict.py,输入
```python
img/street.jpg
```
2. 在predict.py里面进行设置可以进行fps测试和video视频检测。
### b、使用自己训练的权重
1. 按照训练步骤训练。
2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;**model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类**。
```python
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/yolo4_weight.h5',
"classes_path" : 'model_data/coco_classes.txt',
#---------------------------------------------------------------------#
# anchors_path代表先验框对应的txt文件,一般不修改。
# anchors_mask用于帮助代码找到对应的先验框,一般不修改。
#---------------------------------------------------------------------#
"anchors_path" : 'model_data/yolo_anchors.txt',
"anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
#---------------------------------------------------------------------#
# 输入图片的大小,必须为32的倍数。
#---------------------------------------------------------------------#
"input_shape" : [416, 416],
#---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
#---------------------------------------------------------------------#
"confidence" : 0.5,
#---------------------------------------------------------------------#
# 非极大抑制所用到的nms_iou大小
#---------------------------------------------------------------------#
"nms_iou" : 0.3,
#---------------------------------------------------------------------#
# 最大框的数量
#---------------------------------------------------------------------#
"max_boxes" : 100,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : False,
}
```
3. 运行predict.py,输入
```python
img/street.jpg
```
4. 在predict.py里面进行设置可以进行fps测试和video视频检测。## 评估步骤
### a、评估VOC07+12的测试集
1. 本文使用VOC格式进行评估。VOC07+12已经划分好了测试集,无需利用voc_annotation.py生成ImageSets文件夹下的txt。
2. 在yolo.py里面修改model_path以及classes_path。**model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。**
3. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。### b、评估自己的数据集
1. 本文使用VOC格式进行评估。
2. 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
3. 利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
4. 在yolo.py里面修改model_path以及classes_path。**model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。**
5. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。## Reference
https://github.com/qqwweee/keras-yolo3
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/BobLiu20/YOLOv3_PyTorch