Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bukosabino/btctrading
Time Series Forecast with Bitcoin value, to detect upward/down trends with Machine Learning Algorithms
https://github.com/bukosabino/btctrading
bitcoin deep-learning deep-neural-networks forecast future machine-learning machine-learning-algorithms prediction price time-series trends xgboost
Last synced: 14 days ago
JSON representation
Time Series Forecast with Bitcoin value, to detect upward/down trends with Machine Learning Algorithms
- Host: GitHub
- URL: https://github.com/bukosabino/btctrading
- Owner: bukosabino
- License: mit
- Created: 2017-04-13T15:52:04.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-05-27T09:18:12.000Z (over 6 years ago)
- Last Synced: 2024-10-16T05:27:42.202Z (25 days ago)
- Topics: bitcoin, deep-learning, deep-neural-networks, forecast, future, machine-learning, machine-learning-algorithms, prediction, price, time-series, trends, xgboost
- Language: Jupyter Notebook
- Homepage:
- Size: 11.5 MB
- Stars: 153
- Watchers: 18
- Forks: 47
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# btctrading
This is my personal code to predict the Bitcoin value using Machine Learning / Deep Learning Algorithms.
We will consider our problem as:
1. Regression Problem.
2. Classification Multiclass Problem [UP, KEEP, DOWN].Get data from https://bitcoincharts.com/charts, you can choose period, symbol and exchange market and save the datas in a csv file.
# Deployment instructions
### Installation (python3):
```sh
> git clone https://github.com/bukosabino/btctrading.git
> cd btctrading
> virtualenv -p python3 virtualenvironment
> source virtualenvironment/bin/activate
> pip install -r requirements.txt
```### Get data:
API: http://bitcoincharts.com/charts
period = ['1-min', '5-min', '15-min', '30-min', 'Hourly', '2-hour', '6-hour', '12-hour', 'Daily', 'Weekly']
market = ['krakenEUR', 'bitstampUSD'] -> list of markets: https://bitcoincharts.com/charts/volumepie/
```sh
> python get_data.py
```### Run
```sh
> jupyter lab
```# TODO:
* Simulator validation (backtesting)
* Add features -> Global Indicators (EUR/USD, S&P500, etc).
* Add different algorithms or ideas (LSTM, Reinforcement Learning, Q-Learning).
* Alert System (email, twitter, telegram).----
Developed by Bukosabino at Lecrin Technologies - http://lecrintech.com
Please, let us know about any comment or feedback.