Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bungogood/fractal-rs
A fractal generator in Rust, featuring range of algorithms and functions, configurable gradients, and high-resolution outputs.
https://github.com/bungogood/fractal-rs
fractal-generators fractals julia-sets mandelbrot rayon rust visualization
Last synced: 1 day ago
JSON representation
A fractal generator in Rust, featuring range of algorithms and functions, configurable gradients, and high-resolution outputs.
- Host: GitHub
- URL: https://github.com/bungogood/fractal-rs
- Owner: bungogood
- License: mit
- Created: 2023-11-16T21:12:59.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-11-18T14:20:53.000Z (about 1 year ago)
- Last Synced: 2023-11-18T22:58:32.803Z (about 1 year ago)
- Topics: fractal-generators, fractals, julia-sets, mandelbrot, rayon, rust, visualization
- Language: Rust
- Homepage:
- Size: 5.28 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Fractal-rs
[![Build](../../actions/workflows/build.yaml/badge.svg)](../../actions/workflows/build.yaml) [![License](https://img.shields.io/badge/license-MIT-blue.svg)](LICENSE)
![Mandelbrot Set](./examples/mandelbrot.png)
**Fractal-rs** is a fractal visualization tool crafted in Rust, designed to generate a wide array of complex and beautiful fractals. Using [Rust]() along with [Rayon](https://docs.rs/rayon/latest/rayon), enabling it to produce high-resolution images of various fractal patterns. The tool offers configurable color gradients and a diverse selection of fractal generation algorithms, combining performance with visual versatility.
## Fractals
| Fractal | Description | Resources |
| -------------- | ------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------- |
| Mandelbrot Set | A set of complex numbers for which the function $f(z) = z^2 + c$ does not diverge when iterated from $z = 0$ | [Wikipedia](https://en.wikipedia.org/wiki/Mandelbrot_set), [Paul Bourke](https://paulbourke.net/fractals/mandelbrot) |
| Julia Set | A set of complex numbers for which the function $f(z) = z^2 + c$ does not diverge when iterated from $z = c$ | [Wikipedia](https://en.wikipedia.org/wiki/Julia_set), [Paul Bourke](https://paulbourke.net/fractals/juliaset) |
| Burning Ship | A variant of the Mandelbrot set, with the function $f(z) = (\| Re(z) \| + i \| Im(z) \| )^2 + c$ | [Wikipedia](https://en.wikipedia.org/wiki/Burning_Ship_fractal), [Paul Bourke](https://paulbourke.net/fractals/burnship) |
| Lyapunov | A fractal based on the logistic map $x_{n+1} = r x_n (1 - x_n)$ | [Wikipedia](https://en.wikipedia.org/wiki/Lyapunov_fractal), [Paul Bourke](https://paulbourke.net/fractals/lyapunov) |
| Newton Raphson | A fractal based on Newton's method for finding roots of a function | [Wikipedia](https://en.wikipedia.org/wiki/Newton_fractal), [Paul Bourke](https://paulbourke.net/fractals/newtonraphson) |
| Sierpiński | A fractal based on the Sierpiński triangle | [Wikipedia](https://en.wikipedia.org/wiki/Sierpiński_triangle), [Paul Bourke](https://paulbourke.net/fractals/polyhedral) |
| Koch Snowflake | A fractal based on the Koch curve | [Wikipedia](https://en.wikipedia.org/wiki/Koch_snowflake) |
| Dragon Curve | A fractal based on the Heighway dragon curve | [Wikipedia](https://en.wikipedia.org/wiki/Dragon_curve) |
| L-Systems | A fractal based on Lindenmayer systems | [Wikipedia](https://en.wikipedia.org/wiki/L-system), [Paul Bourke](https://paulbourke.net/fractals/lsys) |## References
- Fractals [Wikipedia](https://en.wikipedia.org/wiki/Fractal)
- Paul Bourke [Fractals](https://paulbourke.net/fractals/)