Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/burakahmet/handwriting-digit-recognition
Instant handwriting digit classification with mnist dataset and TensorFlow
https://github.com/burakahmet/handwriting-digit-recognition
artificial-intelligence artificial-neural-networks cnn colab-notebook convolutional-neural-networks data-augmentation handwritten-digit-recognition image-processing keras mnist model numpy pillow python tensorflow tensorflow-examples tensorflow-models tkinter tkinter-canvas tkinter-graphic-interface
Last synced: 5 days ago
JSON representation
Instant handwriting digit classification with mnist dataset and TensorFlow
- Host: GitHub
- URL: https://github.com/burakahmet/handwriting-digit-recognition
- Owner: BurakAhmet
- License: apache-2.0
- Created: 2024-02-08T19:40:58.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-02-12T10:20:14.000Z (9 months ago)
- Last Synced: 2024-10-11T08:42:45.847Z (28 days ago)
- Topics: artificial-intelligence, artificial-neural-networks, cnn, colab-notebook, convolutional-neural-networks, data-augmentation, handwritten-digit-recognition, image-processing, keras, mnist, model, numpy, pillow, python, tensorflow, tensorflow-examples, tensorflow-models, tkinter, tkinter-canvas, tkinter-graphic-interface
- Language: Jupyter Notebook
- Homepage:
- Size: 12.1 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Handwriting Digit Recognition
This project enables the recognition of handwritten digits using TensorFlow and Tkinter libraries with mnist dataset. After drawing a digit on the Tkinter interface, the TensorFlow model is used to predict the drawn digit.I used **CNNs** (Convolutional Neural Networks) and **data augmentation** techniques to get high val-accuracy result.
## Preview
https://github.com/BurakAhmet/Handwriting-Digit-Recognition/assets/89780902/0e31bbf3-eae2-4f34-85c3-37c3b1cf0986## Model
I used CNN (Convolutional Neural Networks) and data augmentation techniques in my model
### Model Accuracy
Final training loss: **0.0444**Final training accuracy: **0.9858**
Final validation loss: **0.0182**
Final validation accuracy: **0.9948**
![model accuracy](https://github.com/BurakAhmet/Hand-Writing-Digit-Recognition/assets/89780902/c2566e6c-ea26-4f98-b929-b43317bc8828)
## Technologies Used
* Python 3: The project is developed using Python programming language.
* Pillow (PIL): Utilized for capturing and processing images.
* TensorFlow: Used for training the data, loading pre-trained models and making predictions.
* NumPy: Employed for array manipulation and normalization of input data.
* Tkinter: Utilized for creating the user interface (canvas).
* Google Colab: Used for fast model training with GPUs.