Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/burhanahmed1/automobiles-machinelearning-analysis
Data Analysis, training Machine Learning models, and Model Evaluation and Refinement for AutoMobiles dataset.
https://github.com/burhanahmed1/automobiles-machinelearning-analysis
data-acquisition data-analysis-project data-science data-wrangling exploratory-data-analysis insights machine-learning machine-learning-models matplotlib model-evaluation-and-refinement numpy pandas python scikit-learn scipy-stats seaborn
Last synced: 9 days ago
JSON representation
Data Analysis, training Machine Learning models, and Model Evaluation and Refinement for AutoMobiles dataset.
- Host: GitHub
- URL: https://github.com/burhanahmed1/automobiles-machinelearning-analysis
- Owner: burhanahmed1
- License: mit
- Created: 2024-07-01T05:48:16.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-07-26T04:33:21.000Z (4 months ago)
- Last Synced: 2024-07-26T05:37:46.002Z (4 months ago)
- Topics: data-acquisition, data-analysis-project, data-science, data-wrangling, exploratory-data-analysis, insights, machine-learning, machine-learning-models, matplotlib, model-evaluation-and-refinement, numpy, pandas, python, scikit-learn, scipy-stats, seaborn
- Language: Jupyter Notebook
- Homepage:
- Size: 457 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Automobiles Machine Learning Analysis
## Introduction
This repository contains the analysis and machine learning model implementation for the automobile dataset. The goal is to predict various automobile attributes using different machine learning techniques.## Table of Contents
1. Data Import and Cleaning
2. Exploratory Data Analysis (EDA)
3. Model Evaluation
4. Over-fitting, Under-fitting, and Model Selection
5. Ridge Regression
6. Grid Search## Technologies Used
- **Programming Language**: Python
- **Libraries**: Pandas, NumPy, Scikit-Learn
- **Tools**: Jupyter Notebook## R-squared (R²) Values:
- Linear Regression: 0.3636
- Multiple Linear Regression: 0.6619
- Polynomial Regression (degree 5): 0.5568
- Ridge Regression (best alpha=10000): 0.8412## Getting Started
To get started with this project, clone the repository and install the necessary dependencies:
```bash
git clone https://github.com/burhanahmed1/Automobiles-MachineLearning-Analysis.git
cd Automobiles-MachineLearning-Analysis
pip install -r requirements.txt
```## Usage
Open the Jupyter notebook:
```bash
jupyter notebook AutoMobile-ML.ipynb
```## Dataset
The dataset used in this analysis is AutoMobile-Dataset-3.csv, which contains various features related to automobiles such as make, body style, engine type, horsepower, and price.## R^2 scores
**R^2** scores of the **Linear Regression** model created using different degrees of polynomial features, ranging from 1 to 4.
**R^2** values of **Ridge Regression** model for training and testing sets with respect to the values of alpha.
## Contributing
Contributions are welcome! Please fork this repository and submit pull requests.## License
This project is licensed under the MIT License.