Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/buxihuo/OW-YOLO

Detect known and unknown objects in the open world(具有区分已知与未知能力的全新检测器))
https://github.com/buxihuo/OW-YOLO

autolabel deep-learning object-detection open-world open-world-detection pytorch unknown yolo yolov5 yolov8

Last synced: about 1 month ago
JSON representation

Detect known and unknown objects in the open world(具有区分已知与未知能力的全新检测器))

Awesome Lists containing this project

README

        

![015](https://user-images.githubusercontent.com/84908793/221391769-2503d415-60c3-4c4b-a432-a4f0fdfa186c.png)

# 快速开始

## 1. 安装
同yolov5

## 2. 推理


推理示例

```bash
$ python detect.py --source data/images --weights m-obj365.pt --unknownconf 0.45 --conf 0.25
$ python detect.py --source data/images --weights s-coco.pt --unknownconf 0.25 --conf 0.25
'''
参数解读
unknownconf: 当网络预测的“不知道”分数大于此阈值时预测为不知道,否则输出已知分类。
1)与已知类精度关系:当已知类精度越高时,“不知道”在已知类上发生的情况将越少,预测未知类时可以设定更低的unknownconf而不影响已知类性能。
2)与训练集大小关系:训练集越丰富,预测未知类的能力越强
注:可根据需求调节此参数,需要注意的是由于资源问题,在objects365数据集下训练的模型m-obj365.pt仅在小模型下训练了30轮,精度较低,建议采用较高阈值。
其他参数:
1)非极大值抑制:默认类内NMS(非极大值抑制)iou阈值为0.45,参数为iou;同时进行类间NMS,iou阈值为0.75,后续将提供参数接口。
2)不知道的物体类名:可在detect文件中修改,后续将提供接口。
'''

```


视频展示

1. [demo1](https://b23.tv/MfpEmAm)
2. [demo2](https://www.bilibili.com/video/BV1Nm4y1P7UW/?share_source=copy_web&vd_source=4f63c00122ad06d30c832c5c6f903637)

## 3. 预训练模型

[s-coco.pt](https://github.com/buxihuo/OW-YOLO/releases/download/0.1/s-coco.pt)

[m-obj365.pt](https://github.com/buxihuo/OW-YOLO/releases/download/0.1/m-obj365.pt)

### coco数据集性能
|Model |size
(pixels)|mAPval
0.5:0.95 |mAPval
0.5 |
|--- |--- |--- |---
|yolov8-n |640 |37.3 |52.6
|OW-yolov8-n |640 |37.9 (only known 38) |53.7 (only known 53.9)
|OW-yolov8-n-la |640 | |
```bash
la : label attention

```

## 4. 后续功能
图像分类、实例分割