Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/bytedance/OMGD

Online Multi-Granularity Distillation for GAN Compression (ICCV2021)
https://github.com/bytedance/OMGD

research

Last synced: 24 days ago
JSON representation

Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Awesome Lists containing this project

README

        

# Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

This repository contains the pytorch codes and trained models described in the ICCV2021 paper "[Online Multi-Granularity Distillation for GAN Compression](https://arxiv.org/pdf/2108.06908.pdf)". This algorithm is proposed by ByteDance, Intelligent Creation, AutoML Team (字节跳动-智能创作-AutoML团队).

Authors: Yuxi Ren*, Jie Wu*, Xuefeng Xiao, Jianchao Yang.

## Overview

![overview](imgs/OMGD.png)

## Performance

![performance](imgs/performance.png)

## Prerequisites

* Linux
* Python 3
* CPU or NVIDIA GPU + CUDA CuDNN

## Getting Started

### Installation

- Clone this repo:

```shell
git clone https://github.com/bytedance/OMGD.git
cd OMGD
```

- Install dependencies.

```shell
conda create -n OMGD python=3.7
conda activate OMGD
pip install torch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0
pip install -r requirements.txt
```

### Data preparation

- edges2shoes

- Download the dataset
```shell
bash datasets/download_pix2pix_dataset.sh edges2shoes-r
```

- Get the statistical information for the ground-truth images for your dataset to compute FID.
```shell
bash datasets/download_real_stat.sh edges2shoes-r B
```

- cityscapes

- Download the dataset
Download the dataset (*gtFine_trainvaltest.zip* and *leftImg8bit_trainvaltest.zip*) from [here](https://cityscapes-dataset.com), and preprocess it.
```shell
python datasets/get_trainIds.py database/cityscapes-origin/gtFine/
python datasets/prepare_cityscapes_dataset.py \
--gtFine_dir database/cityscapes-origin/gtFine \
--leftImg8bit_dir database/cityscapes-origin/leftImg8bit \
--output_dir database/cityscapes \
--train_table_path datasets/train_table.txt \
--val_table_path datasets/val_table.txt
```

- Get the statistical information for the ground-truth images for your dataset to compute FID.
```shell
bash datasets/download_real_stat.sh cityscapes A
```

- horse2zebra

- Download the dataset
```shell
bash datasets/download_cyclegan_dataset.sh horse2zebra
```

- Get the statistical information for the ground-truth images for your dataset to compute FID.
```shell
bash datasets/download_real_stat.sh horse2zebra A
bash datasets/download_real_stat.sh horse2zebra B
```

- summer2winter

- Download the dataset
```shell
bash datasets/download_cyclegan_dataset.sh summer2winter_yosemite
```
- Get the statistical information for the ground-truth images for your dataset to compute FID from [here](https://drive.google.com/drive/folders/1JKJlpUDdD4TdXdwPwfdWUiF4PsXLAbto)

### Pretrained Model

We provide a list of pre-trained models in [link](https://drive.google.com/drive/folders/1lDSguCuRDKl2bKQzAuc8hR-UE7eTqWvW?usp=sharing). DRN model can used to compute mIoU [link](https://drive.google.com/drive/folders/0B_4LoEXGO1TwcmhzLXpWUVFEMXM?resourcekey=0-PMTQHtlWMtSBYozjajFLXA).

### Training

- pretrained vgg16
we should prepare weights of a vgg16 to calculate the style loss

- train student model using OMGD
Run the following script to train a unet-style student on cityscapes dataset,
all scripts for cyclegan and pix2pix on horse2zebra,summer2winter,edges2shoes and cityscapes can be found in ./scripts

```shell
bash scripts/unet_pix2pix/cityscapes/distill.sh
```

### Testing

- test student models, FID or mIoU will be calculated, take unet-style generator on cityscapes dataset as an example

```shell
bash scripts/unet_pix2pix/cityscapes/test.sh
```

## Citation

If you use this code for your research, please cite our paper.
```shell
@article{ren2021online,
title={Online Multi-Granularity Distillation for GAN Compression},
author={Ren, Yuxi and Wu, Jie and Xiao, Xuefeng and Yang, Jianchao},
journal={arXiv preprint arXiv:2108.06908},
year={2021}
}
```

## Acknowledgements

Our code is developed based on [GAN Compression](https://github.com/mit-han-lab/gan-compression)