Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bytedance/OMGD
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)
https://github.com/bytedance/OMGD
research
Last synced: 24 days ago
JSON representation
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)
- Host: GitHub
- URL: https://github.com/bytedance/OMGD
- Owner: bytedance
- Created: 2021-08-16T03:04:34.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-10-08T10:30:56.000Z (about 2 years ago)
- Last Synced: 2024-11-25T04:05:10.903Z (27 days ago)
- Topics: research
- Language: Python
- Homepage:
- Size: 1.03 MB
- Stars: 331
- Watchers: 12
- Forks: 41
- Open Issues: 15
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- StarryDivineSky - bytedance/OMGD
README
# Online Multi-Granularity Distillation for GAN Compression (ICCV2021)
This repository contains the pytorch codes and trained models described in the ICCV2021 paper "[Online Multi-Granularity Distillation for GAN Compression](https://arxiv.org/pdf/2108.06908.pdf)". This algorithm is proposed by ByteDance, Intelligent Creation, AutoML Team (字节跳动-智能创作-AutoML团队).
Authors: Yuxi Ren*, Jie Wu*, Xuefeng Xiao, Jianchao Yang.
## Overview
![overview](imgs/OMGD.png)
## Performance
![performance](imgs/performance.png)
## Prerequisites
* Linux
* Python 3
* CPU or NVIDIA GPU + CUDA CuDNN## Getting Started
### Installation
- Clone this repo:
```shell
git clone https://github.com/bytedance/OMGD.git
cd OMGD
```- Install dependencies.
```shell
conda create -n OMGD python=3.7
conda activate OMGD
pip install torch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0
pip install -r requirements.txt
```### Data preparation
- edges2shoes
- Download the dataset
```shell
bash datasets/download_pix2pix_dataset.sh edges2shoes-r
```
- Get the statistical information for the ground-truth images for your dataset to compute FID.
```shell
bash datasets/download_real_stat.sh edges2shoes-r B
```
- cityscapes
- Download the dataset
Download the dataset (*gtFine_trainvaltest.zip* and *leftImg8bit_trainvaltest.zip*) from [here](https://cityscapes-dataset.com), and preprocess it.
```shell
python datasets/get_trainIds.py database/cityscapes-origin/gtFine/
python datasets/prepare_cityscapes_dataset.py \
--gtFine_dir database/cityscapes-origin/gtFine \
--leftImg8bit_dir database/cityscapes-origin/leftImg8bit \
--output_dir database/cityscapes \
--train_table_path datasets/train_table.txt \
--val_table_path datasets/val_table.txt
```
- Get the statistical information for the ground-truth images for your dataset to compute FID.
```shell
bash datasets/download_real_stat.sh cityscapes A
```- horse2zebra
- Download the dataset
```shell
bash datasets/download_cyclegan_dataset.sh horse2zebra
```- Get the statistical information for the ground-truth images for your dataset to compute FID.
```shell
bash datasets/download_real_stat.sh horse2zebra A
bash datasets/download_real_stat.sh horse2zebra B
```
- summer2winter- Download the dataset
```shell
bash datasets/download_cyclegan_dataset.sh summer2winter_yosemite
```
- Get the statistical information for the ground-truth images for your dataset to compute FID from [here](https://drive.google.com/drive/folders/1JKJlpUDdD4TdXdwPwfdWUiF4PsXLAbto)### Pretrained Model
We provide a list of pre-trained models in [link](https://drive.google.com/drive/folders/1lDSguCuRDKl2bKQzAuc8hR-UE7eTqWvW?usp=sharing). DRN model can used to compute mIoU [link](https://drive.google.com/drive/folders/0B_4LoEXGO1TwcmhzLXpWUVFEMXM?resourcekey=0-PMTQHtlWMtSBYozjajFLXA).
### Training
- pretrained vgg16
we should prepare weights of a vgg16 to calculate the style loss
- train student model using OMGD
Run the following script to train a unet-style student on cityscapes dataset,
all scripts for cyclegan and pix2pix on horse2zebra,summer2winter,edges2shoes and cityscapes can be found in ./scripts```shell
bash scripts/unet_pix2pix/cityscapes/distill.sh
```### Testing
- test student models, FID or mIoU will be calculated, take unet-style generator on cityscapes dataset as an example
```shell
bash scripts/unet_pix2pix/cityscapes/test.sh
```## Citation
If you use this code for your research, please cite our paper.
```shell
@article{ren2021online,
title={Online Multi-Granularity Distillation for GAN Compression},
author={Ren, Yuxi and Wu, Jie and Xiao, Xuefeng and Yang, Jianchao},
journal={arXiv preprint arXiv:2108.06908},
year={2021}
}
```## Acknowledgements
Our code is developed based on [GAN Compression](https://github.com/mit-han-lab/gan-compression)