Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bytedeco/javacv
Java interface to OpenCV, FFmpeg, and more
https://github.com/bytedeco/javacv
computer-vision ffmpeg java javacv maven multimedia opencv opencv-java
Last synced: 5 days ago
JSON representation
Java interface to OpenCV, FFmpeg, and more
- Host: GitHub
- URL: https://github.com/bytedeco/javacv
- Owner: bytedeco
- License: other
- Created: 2014-04-21T13:50:26.000Z (over 10 years ago)
- Default Branch: master
- Last Pushed: 2024-12-15T13:16:51.000Z (27 days ago)
- Last Synced: 2024-12-30T15:07:42.706Z (12 days ago)
- Topics: computer-vision, ffmpeg, java, javacv, maven, multimedia, opencv, opencv-java
- Language: Java
- Homepage:
- Size: 7.42 MB
- Stars: 7,643
- Watchers: 245
- Forks: 1,599
- Open Issues: 447
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-java - JavaCV - Java interface to OpenCV, FFmpeg, and more. (Projects / Miscellaneous)
- awesome-java-zh - JavaCV - Java接口OpenCV,FFmpeg,以及更多。 (项目 / 计算机视觉)
- awesome-java - JavaCV - Java interface to OpenCV, FFmpeg, and much more. (Projects / Computer Vision)
- awesome - javacv - Java interface to OpenCV, FFmpeg, and more (opencv-java)
- awesome - javacv - Java interface to OpenCV, FFmpeg, and more (opencv-java)
README
JavaCV
======[![Gitter](https://badges.gitter.im/bytedeco/javacv.svg)](https://gitter.im/bytedeco/javacv) [![Maven Central](https://maven-badges.herokuapp.com/maven-central/org.bytedeco/javacv-platform/badge.svg)](https://maven-badges.herokuapp.com/maven-central/org.bytedeco/javacv-platform) [![Sonatype Nexus (Snapshots)](https://img.shields.io/nexus/s/https/oss.sonatype.org/org.bytedeco/javacv.svg)](http://bytedeco.org/builds/) [![Build Status](https://travis-ci.org/bytedeco/javacv.svg?branch=master)](https://travis-ci.org/bytedeco/javacv) Commercial support: [![xscode](https://img.shields.io/badge/Available%20on-xs%3Acode-blue?style=?style=plastic&logo=appveyor&logo=)](https://xscode.com/bytedeco/javacv)
Introduction
------------
JavaCV uses wrappers from the [JavaCPP Presets](https://github.com/bytedeco/javacpp-presets) of commonly used libraries by researchers in the field of computer vision ([OpenCV](http://opencv.org/), [FFmpeg](http://ffmpeg.org/), [libdc1394](http://damien.douxchamps.net/ieee1394/libdc1394/), [FlyCapture](https://www.flir.com/products/flycapture-sdk/), [Spinnaker](https://www.flir.com/products/spinnaker-sdk/), [OpenKinect](http://openkinect.org/), [librealsense](https://github.com/IntelRealSense/librealsense), [CL PS3 Eye Driver](https://codelaboratories.com/downloads/), [videoInput](http://muonics.net/school/spring05/videoInput/), [ARToolKitPlus](https://launchpad.net/artoolkitplus), [flandmark](https://github.com/uricamic/flandmark), [Leptonica](http://www.leptonica.org/), and [Tesseract](https://github.com/tesseract-ocr/tesseract)) and provides utility classes to make their functionality easier to use on the Java platform, including Android.JavaCV also comes with hardware accelerated full-screen image display (`CanvasFrame` and `GLCanvasFrame`), easy-to-use methods to execute code in parallel on multiple cores (`Parallel`), user-friendly geometric and color calibration of cameras and projectors (`GeometricCalibrator`, `ProCamGeometricCalibrator`, `ProCamColorCalibrator`), detection and matching of feature points (`ObjectFinder`), a set of classes that implement direct image alignment of projector-camera systems (mainly `GNImageAligner`, `ProjectiveTransformer`, `ProjectiveColorTransformer`, `ProCamTransformer`, and `ReflectanceInitializer`), a blob analysis package (`Blobs`), as well as miscellaneous functionality in the `JavaCV` class. Some of these classes also have an OpenCL and OpenGL counterpart, their names ending with `CL` or starting with `GL`, i.e.: `JavaCVCL`, `GLCanvasFrame`, etc.
To learn how to use the API, since documentation currently lacks, please refer to the [Sample Usage](#sample-usage) section below as well as the [sample programs](https://github.com/bytedeco/javacv/tree/master/samples/), including two for Android (`FacePreview.java` and `RecordActivity.java`), also found in the `samples` directory. You may also find it useful to refer to the source code of [ProCamCalib](https://github.com/bytedeco/procamcalib) and [ProCamTracker](https://github.com/bytedeco/procamtracker) as well as [examples ported from OpenCV2 Cookbook](https://github.com/bytedeco/javacv-examples/) and the associated [wiki pages](https://github.com/bytedeco/javacv-examples/tree/master/OpenCV_Cookbook).
Please keep me informed of any updates or fixes you make to the code so that I may integrate them into the next release. Thank you! And feel free to ask questions on [the mailing list](http://groups.google.com/group/javacv) or [the discussion forum](https://github.com/bytedeco/javacv/discussions) if you encounter any problems with the software! I am sure it is far from perfect...
Downloads
---------
Archives containing JAR files are available as [releases](https://github.com/bytedeco/javacv/releases). The binary archive contains builds for Android, iOS, Linux, Mac OS X, and Windows. The JAR files for specific child modules or platforms can also be obtained individually from the [Maven Central Repository](http://search.maven.org/#search|ga|1|bytedeco).To install manually the JAR files, follow the instructions in the [Manual Installation](#manual-installation) section below.
We can also have everything downloaded and installed automatically with:
* Maven (inside the `pom.xml` file)
```xml
org.bytedeco
javacv-platform
1.5.11
```* Gradle (inside the `build.gradle.kts` or `build.gradle` file)
```groovy
dependencies {
implementation("org.bytedeco:javacv-platform:1.5.11")
}
```* Leiningen (inside the `project.clj` file)
```clojure
:dependencies [
[org.bytedeco/javacv-platform "1.5.11"]
]
```* sbt (inside the `build.sbt` file)
```scala
libraryDependencies += "org.bytedeco" % "javacv-platform" % "1.5.11"
```This downloads binaries for all platforms, but to get binaries for only one platform we can set the `javacpp.platform` system property (via the `-D` command line option) to something like `android-arm`, `linux-x86_64`, `macosx-x86_64`, `windows-x86_64`, etc. Please refer to the [README.md file of the JavaCPP Presets](https://github.com/bytedeco/javacpp-presets#downloads) for details. Another option available to Gradle users is [Gradle JavaCPP](https://github.com/bytedeco/gradle-javacpp), and similarly for Scala users there is [SBT-JavaCV](https://github.com/bytedeco/sbt-javacv).
Required Software
-----------------
To use JavaCV, you will first need to download and install the following software:* An implementation of Java SE 7 or newer:
* OpenJDK http://openjdk.java.net/install/ or
* Oracle JDK http://www.oracle.com/technetwork/java/javase/downloads/ or
* IBM JDK http://www.ibm.com/developerworks/java/jdk/Further, although not always required, some functionality of JavaCV also relies on:
* CL Eye Platform SDK (Windows only) http://codelaboratories.com/downloads/
* Android SDK API 21 or newer http://developer.android.com/sdk/
* JOCL and JOGL from JogAmp http://jogamp.org/Finally, please make sure everything has the same bitness: **32-bit and 64-bit modules do not mix under any circumstances**.
Manual Installation
-------------------
Simply put all the desired JAR files (`opencv*.jar`, `ffmpeg*.jar`, etc.), in addition to `javacpp.jar` and `javacv.jar`, somewhere in your class path. Here are some more specific instructions for common cases:NetBeans (Java SE 7 or newer):
1. In the Projects window, right-click the Libraries node of your project, and select "Add JAR/Folder...".
2. Locate the JAR files, select them, and click OK.Eclipse (Java SE 7 or newer):
1. Navigate to Project > Properties > Java Build Path > Libraries and click "Add External JARs...".
2. Locate the JAR files, select them, and click OK.
Visual Studio Code (Java SE 7 or newer):1. Navigate to Java Projects > Referenced Libraries, and click `+`.
2. Locate the JAR files, select them, and click OK.IntelliJ IDEA (Android 7.0 or newer):
1. Follow the instructions on this page: http://developer.android.com/training/basics/firstapp/
2. Copy all the JAR files into the `app/libs` subdirectory.
3. Navigate to File > Project Structure > app > Dependencies, click `+`, and select "2 File dependency".
4. Select all the JAR files from the `libs` subdirectory.
5. In the AndroidManifest.xml add `android:extractNativeLibs="true"`After that, the wrapper classes for OpenCV and FFmpeg, for example, can automatically access all of their C/C++ APIs:
* [OpenCV documentation](http://docs.opencv.org/master/)
* [FFmpeg documentation](http://ffmpeg.org/doxygen/trunk/)Sample Usage
------------
The class definitions are basically ports to Java of the original header files in C/C++, and I deliberately decided to keep as much of the original syntax as possible. For example, here is a method that tries to load an image file, smooth it, and save it back to disk:```java
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_imgcodecs.*;public class Smoother {
public static void smooth(String filename) {
Mat image = imread(filename);
if (image != null) {
GaussianBlur(image, image, new Size(3, 3), 0);
imwrite(filename, image);
}
}
}
```JavaCV also comes with helper classes and methods on top of OpenCV and FFmpeg to facilitate their integration to the Java platform. Here is a small demo program demonstrating the most frequently useful parts:
```java
import java.io.File;
import java.net.URL;
import org.bytedeco.javacv.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.indexer.*;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_imgproc.*;
import org.bytedeco.opencv.opencv_calib3d.*;
import org.bytedeco.opencv.opencv_objdetect.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_calib3d.*;
import static org.bytedeco.opencv.global.opencv_objdetect.*;public class Demo {
public static void main(String[] args) throws Exception {
String classifierName = null;
if (args.length > 0) {
classifierName = args[0];
} else {
URL url = new URL("https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml");
File file = Loader.cacheResource(url);
classifierName = file.getAbsolutePath();
}// We can "cast" Pointer objects by instantiating a new object of the desired class.
CascadeClassifier classifier = new CascadeClassifier(classifierName);
if (classifier == null) {
System.err.println("Error loading classifier file \"" + classifierName + "\".");
System.exit(1);
}// The available FrameGrabber classes include OpenCVFrameGrabber (opencv_videoio),
// DC1394FrameGrabber, FlyCapture2FrameGrabber, OpenKinectFrameGrabber, OpenKinect2FrameGrabber,
// RealSenseFrameGrabber, RealSense2FrameGrabber, PS3EyeFrameGrabber, VideoInputFrameGrabber, and FFmpegFrameGrabber.
FrameGrabber grabber = FrameGrabber.createDefault(0);
grabber.start();// CanvasFrame, FrameGrabber, and FrameRecorder use Frame objects to communicate image data.
// We need a FrameConverter to interface with other APIs (Android, Java 2D, JavaFX, Tesseract, OpenCV, etc).
OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();// FAQ about IplImage and Mat objects from OpenCV:
// - For custom raw processing of data, createBuffer() returns an NIO direct
// buffer wrapped around the memory pointed by imageData, and under Android we can
// also use that Buffer with Bitmap.copyPixelsFromBuffer() and copyPixelsToBuffer().
// - To get a BufferedImage from an IplImage, or vice versa, we can chain calls to
// Java2DFrameConverter and OpenCVFrameConverter, one after the other.
// - Java2DFrameConverter also has static copy() methods that we can use to transfer
// data more directly between BufferedImage and IplImage or Mat via Frame objects.
Mat grabbedImage = converter.convert(grabber.grab());
int height = grabbedImage.rows();
int width = grabbedImage.cols();// Objects allocated with `new`, clone(), or a create*() factory method are automatically released
// by the garbage collector, but may still be explicitly released by calling deallocate().
// You shall NOT call cvReleaseImage(), cvReleaseMemStorage(), etc. on objects allocated this way.
Mat grayImage = new Mat(height, width, CV_8UC1);
Mat rotatedImage = grabbedImage.clone();// The OpenCVFrameRecorder class simply uses the VideoWriter of opencv_videoio,
// but FFmpegFrameRecorder also exists as a more versatile alternative.
FrameRecorder recorder = FrameRecorder.createDefault("output.avi", width, height);
recorder.start();// CanvasFrame is a JFrame containing a Canvas component, which is hardware accelerated.
// It can also switch into full-screen mode when called with a screenNumber.
// We should also specify the relative monitor/camera response for proper gamma correction.
CanvasFrame frame = new CanvasFrame("Some Title", CanvasFrame.getDefaultGamma()/grabber.getGamma());// Let's create some random 3D rotation...
Mat randomR = new Mat(3, 3, CV_64FC1),
randomAxis = new Mat(3, 1, CV_64FC1);
// We can easily and efficiently access the elements of matrices and images
// through an Indexer object with the set of get() and put() methods.
DoubleIndexer Ridx = randomR.createIndexer(),
axisIdx = randomAxis.createIndexer();
axisIdx.put(0, (Math.random() - 0.5) / 4,
(Math.random() - 0.5) / 4,
(Math.random() - 0.5) / 4);
Rodrigues(randomAxis, randomR);
double f = (width + height) / 2.0; Ridx.put(0, 2, Ridx.get(0, 2) * f);
Ridx.put(1, 2, Ridx.get(1, 2) * f);
Ridx.put(2, 0, Ridx.get(2, 0) / f); Ridx.put(2, 1, Ridx.get(2, 1) / f);
System.out.println(Ridx);// We can allocate native arrays using constructors taking an integer as argument.
Point hatPoints = new Point(3);while (frame.isVisible() && (grabbedImage = converter.convert(grabber.grab())) != null) {
// Let's try to detect some faces! but we need a grayscale image...
cvtColor(grabbedImage, grayImage, CV_BGR2GRAY);
RectVector faces = new RectVector();
classifier.detectMultiScale(grayImage, faces);
long total = faces.size();
for (long i = 0; i < total; i++) {
Rect r = faces.get(i);
int x = r.x(), y = r.y(), w = r.width(), h = r.height();
rectangle(grabbedImage, new Point(x, y), new Point(x + w, y + h), Scalar.RED, 1, CV_AA, 0);// To access or pass as argument the elements of a native array, call position() before.
hatPoints.position(0).x(x - w / 10 ).y(y - h / 10);
hatPoints.position(1).x(x + w * 11 / 10).y(y - h / 10);
hatPoints.position(2).x(x + w / 2 ).y(y - h / 2 );
fillConvexPoly(grabbedImage, hatPoints.position(0), 3, Scalar.GREEN, CV_AA, 0);
}// Let's find some contours! but first some thresholding...
threshold(grayImage, grayImage, 64, 255, CV_THRESH_BINARY);// To check if an output argument is null we may call either isNull() or equals(null).
MatVector contours = new MatVector();
findContours(grayImage, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
long n = contours.size();
for (long i = 0; i < n; i++) {
Mat contour = contours.get(i);
Mat points = new Mat();
approxPolyDP(contour, points, arcLength(contour, true) * 0.02, true);
drawContours(grabbedImage, new MatVector(points), -1, Scalar.BLUE);
}warpPerspective(grabbedImage, rotatedImage, randomR, rotatedImage.size());
Frame rotatedFrame = converter.convert(rotatedImage);
frame.showImage(rotatedFrame);
recorder.record(rotatedFrame);
}
frame.dispose();
recorder.stop();
grabber.stop();
}
}
```Furthermore, after creating a `pom.xml` file with the following content:
```xml4.0.0
org.bytedeco.javacv
demo
1.5.11
1.7
1.7
org.bytedeco
javacv-platform
1.5.11
org.bytedeco
opencv-platform-gpu
4.10.0-1.5.11
org.bytedeco
ffmpeg-platform-gpl
7.1-1.5.11
.
```
And by placing the source code above in `Demo.java`, or similarly for other classes found in the [`samples`](samples), we can use the following command to have everything first installed automatically and then executed by Maven:
```bash
$ mvn compile exec:java -Dexec.mainClass=Demo
```**Note**: In case of errors, please make sure that the `artifactId` in the `pom.xml` file reads `javacv-platform`, not `javacv` only, for example. The artifact `javacv-platform` adds all the necessary binary dependencies.
Build Instructions
------------------
If the binary files available above are not enough for your needs, you might need to rebuild them from the source code. To this end, the project files were created for:* Maven 3.x http://maven.apache.org/download.html
* JavaCPP 1.5.11 https://github.com/bytedeco/javacpp
* JavaCPP Presets 1.5.11 https://github.com/bytedeco/javacpp-presetsOnce installed, simply call the usual `mvn install` command for JavaCPP, its Presets, and JavaCV. By default, no other dependencies than a C++ compiler for JavaCPP are required. Please refer to the comments inside the `pom.xml` files for further details.
Instead of building the native libraries manually, we can run `mvn install` for JavaCV only and rely on the snapshot artifacts from the CI builds:
* http://bytedeco.org/builds/
----
Project lead: Samuel Audet [samuel.audet `at` gmail.com](mailto:samuel.audet at gmail.com)
Developer site: https://github.com/bytedeco/javacv
Discussion group: http://groups.google.com/group/javacv