Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/calmiLovesAI/TensorFlow2.0_ResNet
A ResNet(ResNet18, ResNet34, ResNet50, ResNet101, ResNet152) implementation using TensorFlow-2.0.
https://github.com/calmiLovesAI/TensorFlow2.0_ResNet
Last synced: 2 months ago
JSON representation
A ResNet(ResNet18, ResNet34, ResNet50, ResNet101, ResNet152) implementation using TensorFlow-2.0.
- Host: GitHub
- URL: https://github.com/calmiLovesAI/TensorFlow2.0_ResNet
- Owner: calmiLovesAI
- License: mit
- Created: 2019-07-16T09:23:52.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2021-08-28T02:52:44.000Z (over 3 years ago)
- Last Synced: 2024-10-27T15:27:39.235Z (3 months ago)
- Language: Python
- Homepage:
- Size: 16.1 MB
- Stars: 321
- Watchers: 5
- Forks: 100
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Tensorflow2 - calmisential/TensorFlow2.0_ResNet
README
# TensorFlow2.0_ResNet
A ResNet(**ResNet18, ResNet34, ResNet50, ResNet101, ResNet152**) implementation using TensorFlow-2.0See https://github.com/calmisential/Basic_CNNs_TensorFlow2.0 for more CNNs.
## Train
1. Requirements:
+ Python >= 3.6
+ Tensorflow == 2.0.0
2. To train the ResNet on your own dataset, you can put the dataset under the folder **original dataset**, and the directory should look like this:
```
|——original dataset
|——class_name_0
|——class_name_1
|——class_name_2
|——class_name_3
```
3. Run the script **split_dataset.py** to split the raw dataset into train set, valid set and test set.
4. Change the corresponding parameters in **config.py**.
5. Run **train.py** to start training.
## Evaluate
Run **evaluate.py** to evaluate the model's performance on the test dataset.## The networks I have implemented with tensorflow2.0:
+ [ResNet18, ResNet34, ResNet50, ResNet101, ResNet152](https://github.com/calmisential/TensorFlow2.0_ResNet)
+ [InceptionV3](https://github.com/calmisential/TensorFlow2.0_InceptionV3)## References
1. The original paper: https://arxiv.org/abs/1512.03385
2. The TensorFlow official tutorials: https://tensorflow.google.cn/beta/tutorials/quickstart/advanced