Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/carleslc/audiototext
Transcribe and translate audio to text using Whisper and DeepL.
https://github.com/carleslc/audiototext
audio audio-processing captions colab-notebook deepl ffmpeg google-colab jupyter-notebook language openai-whisper python speech-to-text subtitles text transcribe transcription translate translation whisper whisper-api
Last synced: 17 days ago
JSON representation
Transcribe and translate audio to text using Whisper and DeepL.
- Host: GitHub
- URL: https://github.com/carleslc/audiototext
- Owner: Carleslc
- Created: 2023-02-06T17:25:05.000Z (almost 2 years ago)
- Default Branch: master
- Last Pushed: 2024-01-22T13:53:28.000Z (10 months ago)
- Last Synced: 2024-10-14T22:50:12.910Z (29 days ago)
- Topics: audio, audio-processing, captions, colab-notebook, deepl, ffmpeg, google-colab, jupyter-notebook, language, openai-whisper, python, speech-to-text, subtitles, text, transcribe, transcription, translate, translation, whisper, whisper-api
- Language: Jupyter Notebook
- Homepage: https://carleslc.me/AudioToText
- Size: 19.4 MB
- Stars: 262
- Watchers: 6
- Forks: 33
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
Awesome Lists containing this project
README
# AudioToText
[![Google Colab Badge](https://img.shields.io/badge/Google%20Colab-F9AB00?logo=googlecolab&logoColor=fff&style=for-the-badge)](https://colab.research.google.com/github/Carleslc/AudioToText/blob/master/AudioToText.ipynb)
[![ko-fi](https://www.ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/carleslc)
**Transcribe** audio using [**Whisper**](https://github.com/openai/whisper) from [OpenAI](https://openai.com/).
**Translate** audio using [**Whisper**](https://github.com/openai/whisper) and [**DeepL**](https://www.deepl.com/) translator.
Generate _captions_ using VTT or SRT file formats.
[**Introducing Whisper** _(OpenAI Blog)_](https://openai.com/blog/whisper/)
[πͺπΈ VΓdeo sobre Whisper _(Dot CSV)_](https://www.youtube.com/watch?v=JuMEmF-2FsA)
## How to use
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Carleslc/AudioToText/blob/master/AudioToText.ipynb)
**Open [AudioToText in Google Colab](https://colab.research.google.com/github/Carleslc/AudioToText/blob/master/AudioToText.ipynb) and follow the step-by-step instructions.**
A Cloud GPU will be assigned to you to run the notebook code to transcribe and translate your audio files.
If you want to run the code in your own computer check [_**local installation**_](#local-installation).
## Features
- [**English transcription**](#audio-transcription-from-english-using-whisper)
- [**Non-English transcription**](#audio-transcription-from-almost-any-language-using-whisper)
- [**Any-to-English translation**](#audio-translation-to-english-using-whisper)- [**Any-to-Any\* translation**](#audio-translation-using-deepl-translator)
Translate the transcriptions using [**DeepL**](https://www.deepl.com/) translator.
[_\* See supported languages by DeepL_](https://support.deepl.com/hc/en-us/articles/360019925219-Languages-included-in-DeepL-Pro)
- [Save transcriptions and captions in different formats](#save-transcripts-to-different-formats): TXT, VTT, SRT, TSV and JSON.
- Choose between [open-source](https://github.com/openai/whisper) models or [API](https://openai.com/blog/introducing-chatgpt-and-whisper-apis#whisper-api).
- [AudioToText CLI](#using-audiototext-cli) for [local usage](#local-installation).
There are several examples in the [**examples**](examples) folder.
![Whisper Features](https://cdn.openai.com/whisper/draft-20220920a/asr-training-data-desktop.svg)
### Audio **transcription** from English using Whisper
`task`: `Transcribe`
`language`: `English`
### Audio **transcription** from [almost any language](https://github.com/openai/whisper#available-models-and-languages) using Whisper
`task`: `Transcribe`
`language`: `Auto-Detect` or select the source language of your audio file
Supported source languages by Whisper
```
Afrikaans
Albanian
Amharic
Arabic
Armenian
Assamese
Azerbaijani
Bashkir
Basque
Belarusian
Bengali
Bosnian
Breton
Bulgarian
Burmese
Castilian
Catalan
Chinese
Croatian
Czech
Danish
Dutch
English
Estonian
Faroese
Finnish
Flemish
French
Galician
Georgian
German
Greek
Gujarati
Haitian
Haitian Creole
Hausa
Hawaiian
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Italian
Japanese
Javanese
Kannada
Kazakh
Khmer
Korean
Lao
Latin
Latvian
Letzeburgesch
Lingala
Lithuanian
Luxembourgish
Macedonian
Malagasy
Malay
Malayalam
Maltese
Maori
Marathi
Moldavian
Moldovan
Mongolian
Myanmar
Nepali
Norwegian
Nynorsk
Occitan
Panjabi
Pashto
Persian
Polish
Portuguese
Punjabi
Pushto
Romanian
Russian
Sanskrit
Serbian
Shona
Sindhi
Sinhala
Sinhalese
Slovak
Slovenian
Somali
Spanish
Sundanese
Swahili
Swedish
Tagalog
Tajik
Tamil
Tatar
Telugu
Thai
Tibetan
Turkish
Turkmen
Ukrainian
Urdu
Uzbek
Valencian
Vietnamese
Welsh
Yiddish
Yoruba
```
### Audio **translation to English** using Whisper
`task`: `Translate to English`
`language`: `Auto-Detect` or select the source language of your audio file
### Audio **translation** using [**DeepL**](https://www.deepl.com/) translator
Translation to other languages than English is not supported by _Whisper_.
However, as an alternative you can use [DeepL API](https://www.deepl.com/pro-api?cta=header-pro-api) to translate the transcription to [another language](https://support.deepl.com/hc/en-us/articles/360019925219-Languages-included-in-DeepL-Pro).
`task`: `Transcribe`
`language`: `Auto-Detect` or select the source language of your audio file \*
Supported source languages by DeepL
```
Bulgarian
Chinese
Czech
Danish
Dutch
English
Estonian
Finnish
French
German
Greek
Hungarian
Indonesian
Italian
Japanese
Korean
Latvian
Lithuanian
Norwegian
Polish
Portuguese
Romanian
Russian
Slovak
Slovenian
Spanish
Swedish
Turkish
Ukrainian
```\* If the source language of your audio file is supported by Whisper but not supported by DeepL you can use the `Translate to English` task to generate an English transcription first and translate that to your desired target language using DeepL.
`deepl_api_key`: Your [DeepL API key](https://www.deepl.com/es/account/summary) generated after registering for a [DeepL Developer Account](https://www.deepl.com/pro-api).
`deepl_target_language`: Select your desired language
Available target languages by DeepL
target_lang
```
Bulgarian
Chinese (simplified)
Czech
Danish
Dutch
English (American)
English (British)
Estonian
Finnish
French
German
Greek
Hungarian
Indonesian
Italian
Japanese
Korean
Latvian
Lithuanian
Norwegian
Polish
Portuguese (Brazilian)
Portuguese (European)
Romanian
Russian
Slovak
Slovenian
Spanish
Swedish
Turkish
Ukrainian
```
The [DeepL API](https://www.deepl.com/pro-api?cta=header-pro-api) has a free quota of **500,000 characters per month**.
If you exceed your free quota you can upgrade to _DeepL API Pro_ or try using the [Free Translator Files](https://www.deepl.com/translator/files) web feature uploading the generated transcripts.
See [**this example**](examples/multiple-files) with audio transcriptions in different languages using Whisper and translation to spanish using DeepL.
### **Save transcripts** to different formats
`output_formats`: Select the desired transcript formats (comma-separated)
Available formats: **txt, vtt, srt, tsv, json**
[`txt`](https://en.wikipedia.org/wiki/Text_file) is recommended to read a transcription.
[`vtt`](https://en.wikipedia.org/wiki/WebVTT) or [`srt`](https://en.wikipedia.org/wiki/SubRip) are recommended to add **captions** to an audio or video.
Transcript files will be located in the _**`audio_transcription`**_ folder.
#### Add captions to VLC media player
If you use [VLC](https://www.videolan.org/) to play video or audio files, you can add your `vtt` or `srt` transcripts as captions by drag-and-drop the transcript file to the media player or go to _Subtitles -> Add Subtitle File_.
With audio-only files you will need to enable a visualization in _Audio -> Visualizations_.
## Local installation
If you have a powerful computer with GPU hardware acceleration, you can run the [_notebook_](AudioToText.ipynb) or [_CLI_](#using-audiototext-cli) in your local machine.
You can also use them locally without a powerful GPU using [API](https://platform.openai.com/account/api-keys), as it always runs in the cloud.
CPU execution is also available, but it is much slower and the [Colab](<(https://colab.research.google.com/github/Carleslc/AudioToText/blob/master/AudioToText.ipynb)>) version or API is recommended if you do not have a decent GPU.
You might, however, try to use the smaller models (`tiny`, `base`, `small`) on your CPU.### Using AudioToText CLI
A plain [_python script_](audiototext.py) is available to use in your system without Jupyter.
#### Install AudioToText CLI
1. Clone this repository or download the [`audiototext.py`](https://raw.githubusercontent.com/Carleslc/AudioToText/master/audiototext.py) script (_right-click -> Save as..._).
2. Install [Python](https://www.python.org/downloads/) (3.8 - 3.10)
3. Install [`ffmpeg`](https://ffmpeg.org/download.html)```sh
# on MacOS using Homebrew (https://brew.sh/)
brew install ffmpeg# on Windows using Chocolatey (https://chocolatey.org/)
choco install ffmpeg# on Ubuntu or Debian
sudo apt update && sudo apt install ffmpeg# on Arch Linux
sudo pacman -S ffmpeg
```#### AudioToText CLI usage
```sh
# Transcribe english.wav using large-v2 model to TXT, VTT, SRT, TSV and JSON formats
python audiototext.py examples/english/english.wav --model large-v2 --output_dir audio_transcription# Translate french.wav from French to English using small model to TXT format
python audiototext.py examples/french-to-english/french.wav --task translate --language French --output_format txt# Transcribe english_japanese.mp3 using API to TXT, VTT and SRT formats
python audiototext.py examples/multi-language/english_japanese.mp3 --output_formats txt,vtt,srt --api_key sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx# Transcribe multiple files using Whisper large-v2 model and then translate the generated transcripts to Spanish using DeepL API to TXT, VTT and SRT formats
python audiototext.py chinese.wav bruce.mp3 english_japanese.mp3 french.wav --model large-v2 --output_formats txt,vtt,srt --deepl_target_language Spanish --deepl_api_key xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx:xx# See all available options
python audiototext.py -h
``````
positional arguments:
audio_file source file to transcribeoptional arguments:
-h, --help show this help message and exit
--task {transcribe,translate}
transcribe (default) or translate (to English)
--model {tiny,base,small,medium,large-v1,large-v2}
model to use (default: small)
--language {Auto-Detect,Afrikaans,Albanian,Amharic,Arabic,Armenian,Assamese,Azerbaijani,Bashkir,Basque,Belarusian,Bengali,Bosnian,Breton,Bulgarian,Burmese,Castilian,Catalan,Chinese,Croatian,Czech,Danish,Dutch,English,Estonian,Faroese,Finnish,Flemish,French,Galician,Georgian,German,Greek,Gujarati,Haitian,Haitian Creole,Hausa,Hawaiian,Hebrew,Hindi,Hungarian,Icelandic,Indonesian,Italian,Japanese,Javanese,Kannada,Kazakh,Khmer,Korean,Lao,Latin,Latvian,Letzeburgesch,Lingala,Lithuanian,Luxembourgish,Macedonian,Malagasy,Malay,Malayalam,Maltese,Maori,Marathi,Moldavian,Moldovan,Mongolian,Myanmar,Nepali,Norwegian,Nynorsk,Occitan,Panjabi,Pashto,Persian,Polish,Portuguese,Punjabi,Pushto,Romanian,Russian,Sanskrit,Serbian,Shona,Sindhi,Sinhala,Sinhalese,Slovak,Slovenian,Somali,Spanish,Sundanese,Swahili,Swedish,Tagalog,Tajik,Tamil,Tatar,Telugu,Thai,Tibetan,Turkish,Turkmen,Ukrainian,Urdu,Uzbek,Valencian,Vietnamese,Welsh,Yiddish,Yoruba}
source file language (default: Auto-Detect)
--prompt PROMPT provide context about the audio or encourage a specific writing style, see https://platform.openai.com/docs/guides/speech-to-text/prompting
--coherence_preference {True,False}
True (default): More coherence, but may repeat text. False: Less repetitions, but may have less coherence
--api_key API_KEY if set with your OpenAI API Key (https://platform.openai.com/account/api-keys), the OpenAI API is used, which can improve the inference speed substantially, but it has an associated cost, see API pricing: https://openai.com/pricing#audio-models.
API model is large-v2 (ignores --model)
--output_formats OUTPUT_FORMATS, --output_format OUTPUT_FORMATS
desired result formats (default: txt,vtt,srt,tsv,json)
--output_dir OUTPUT_DIR
folder to save results (default: audio_transcription)
--deepl_api_key DEEPL_API_KEY
DeepL API key, if you want to translate results using DeepL. Get a DeepL Developer Account API Key: https://www.deepl.com/pro-api
--deepl_target_language {Bulgarian,Chinese,Chinese (simplified),Czech,Danish,Dutch,English,English (American),English (British),Estonian,Finnish,French,German,Greek,Hungarian,Indonesian,Italian,Japanese,Korean,Latvian,Lithuanian,Norwegian,Polish,Portuguese,Portuguese (Brazilian),Portuguese (European),Romanian,Russian,Slovak,Slovenian,Spanish,Swedish,Turkish,Ukrainian}
results target language if you want to translate results using DeepL (--deepl_api_key required)
--deepl_coherence_preference {True,False}
True (default): Share context between lines while translating. False: Translate each line independently
--deepl_formality {default,formal,informal}
whether the translated text should lean towards formal or informal language (languages with formality supported: German,French,Italian,Spanish,Dutch,Polish,Portuguese,Russian)
--skip-install skip pip dependencies installation
```### Using Google Colab with your local environment
[Google Colab](<(https://colab.research.google.com/github/Carleslc/AudioToText/blob/master/AudioToText.ipynb)>) lets you connect to a local runtime using [Jupyter](http://jupyter.org/install).
This allows you to use the notebook using your local hardware and have access to your local file system.[_How to set up and connect to a local runtime in Google Colab_](https://research.google.com/colaboratory/local-runtimes.html)
### Using [Jupyter Notebook](https://github.com/jupyter/notebook)
If you do not want to rely on [Google Colab](#using-google-colab-with-your-local-environment) or use the [AudioToText CLI](#using-audiototext-cli), you can use the [Jupyter Notebook](https://docs.jupyter.org/) interface.
[_How to install Jupyter Notebook_](https://docs.jupyter.org/en/latest/install/notebook-classic.html)
Clone or download this repository and run inside this repository folder:
```sh
jupyter notebook AudioToText.ipynb
```Or just run `jupyter notebook` without cloning this repository and _Upload_ the [`AudioToText.ipynb`](https://raw.githubusercontent.com/Carleslc/AudioToText/master/AudioToText.ipynb) file (_right-click -> Save as..._).
### Using [Jupyter Lab](https://github.com/jupyterlab/jupyterlab)
An alternative to the Jupyter Notebook interface is the [Jupyter Lab](https://jupyterlab.readthedocs.io/) interface.
[_How to install Jupyter Lab_](https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html)
```sh
jupyter lab
```Open the notebook using a URL:
_File -> Open from URL..._
```
https://raw.githubusercontent.com/Carleslc/AudioToText/master/AudioToText.ipynb
```### Using [Whisper CLI](https://github.com/openai/whisper#command-line-usage)
If you do not need Cloud GPU and you do not want to translate using DeepL then you can just use the Whisper CLI in your console as follows:
#### Install [Whisper CLI](https://github.com/openai/whisper#setup) locally
1. Install [Python](https://www.python.org/downloads/) (3.8 - 3.10)
2. Install [`ffmpeg`](https://ffmpeg.org/download.html)
3. Install [Whisper CLI](https://github.com/openai/whisper#setup)```sh
pip install -U openai-whisper
```#### [Whisper CLI usage](https://github.com/openai/whisper#command-line-usage)
```sh
# Transcribe english.wav using large-v2 model to TXT, VTT, SRT, TSV and JSON formats
whisper english.wav --model large-v2 --output_dir audio_transcription --output_format all# Translate french.wav from French to English using small model to TXT format
whisper french.wav --task translate --language French --output_dir audio_transcription --output_format txt# Transcribe multiple files using large-v2 model to TXT, VTT, SRT, TSV and JSON formats
whisper chinese.wav bruce.mp3 english_japanese.mp3 french.wav --model large-v2 --output_dir audio_transcription# See all available options
whisper --help
```