https://github.com/carlomazzaferro/neoantigen
package to obtain neoantigen candidates from a vcf file.
https://github.com/carlomazzaferro/neoantigen
Last synced: 2 months ago
JSON representation
package to obtain neoantigen candidates from a vcf file.
- Host: GitHub
- URL: https://github.com/carlomazzaferro/neoantigen
- Owner: carlomazzaferro
- License: other
- Created: 2016-08-09T17:45:17.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2017-02-08T04:07:00.000Z (over 8 years ago)
- Last Synced: 2025-03-20T02:17:56.563Z (3 months ago)
- Language: Jupyter Notebook
- Size: 16.5 MB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
```python
from VarP import utils"""
Set reader names. Since these and the files will be sorted automatically
by name, make sure the names of readers and files are similar
"""reader_names = ['Tumor_RNA_Reader', 'Tumor_Targeted_Reader',
'Normal_DNA_Reader', 'Normal_Blood_Reader',
'Somatic_Mutect_Reader']path_to_files = '/Volumes/Seagate Backup Plus Drive/vcf_files/varcode_to_test/'
#Initialize class HandleReaders.
myhandler = utils.HandleReaders(reader_names)"""
Create a list of variant collections. See varcode's documentation for
more info on this type of data
"""
list_collections = myhandler.create_collection_from_readers(path_to_files)type(list_collections[4]) #variant.Collection
#Select one to work on
my_collection = list_collections[4]#Obtain codon effects from variant collection
list_coding_effects = myhandler.return_list_coding_effects(my_collection)#Obtain protein list from variant collection
protein_list = myhandler.return_protein_list(list_coding_effects)#Return a dataframe for easy viz
dataframe = myhandler.return_dataframe(protein_list, list_coding_effects)#Generate fasta file for post-processing
myhandler.generate_fasta_file(dataframe, path_to_files+'peps.txt')
```