https://github.com/carpedm20/began-tensorflow
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"
https://github.com/carpedm20/began-tensorflow
began celeba gan generative-model google tensorflow
Last synced: about 1 month ago
JSON representation
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"
- Host: GitHub
- URL: https://github.com/carpedm20/began-tensorflow
- Owner: carpedm20
- License: apache-2.0
- Created: 2017-04-05T14:21:40.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2018-03-26T15:26:02.000Z (about 7 years ago)
- Last Synced: 2025-04-13T02:15:53.507Z (about 1 month ago)
- Topics: began, celeba, gan, generative-model, google, tensorflow
- Language: Python
- Homepage:
- Size: 23 MB
- Stars: 923
- Watchers: 44
- Forks: 238
- Open Issues: 34
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# BEGAN in Tensorflow
Tensorflow implementation of [BEGAN: Boundary Equilibrium Generative Adversarial Networks](https://arxiv.org/abs/1703.10717).

## Requirements
- Python 2.7 or 3.x
- [Pillow](https://pillow.readthedocs.io/en/4.0.x/)
- [tqdm](https://github.com/tqdm/tqdm)
- [requests](https://github.com/kennethreitz/requests) (Only used for downloading CelebA dataset)
- [TensorFlow 1.3.0](https://github.com/tensorflow/tensorflow)## Usage
First download [CelebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) datasets with:
$ apt-get install p7zip-full # ubuntu
$ brew install p7zip # Mac
$ python download.pyor you can use your own dataset by placing images like:
data
└── YOUR_DATASET_NAME
├── xxx.jpg (name doesn't matter)
├── yyy.jpg
└── ...To train a model:
$ python main.py --dataset=CelebA --use_gpu=True
$ python main.py --dataset=YOUR_DATASET_NAME --use_gpu=TrueTo test a model (use your `load_path`):
$ python main.py --dataset=CelebA --load_path=CelebA_0405_124806 --use_gpu=True --is_train=False --split valid
## Results
### Generator output (64x64) with `gamma=0.5` after 300k steps

### Generator output (128x128) with `gamma=0.5` after 200k steps

### Interpolation of Generator output (64x64) with `gamma=0.5` after 300k steps

### Interpolation of Generator output (128x128) with `gamma=0.5` after 200k steps

### Interpolation of Discriminator output of real images










## Related works
- [DCGAN-tensorflow](https://github.com/carpedm20/DCGAN-tensorflow)
- [DiscoGAN-pytorch](https://github.com/carpedm20/DiscoGAN-pytorch)
- [simulated-unsupervised-tensorflow](https://github.com/carpedm20/simulated-unsupervised-tensorflow)## Author
Taehoon Kim / [@carpedm20](http://carpedm20.github.io)