Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/carpedm20/naf-tensorflow
"Continuous Deep Q-Learning with Model-based Acceleration" in TensorFlow
https://github.com/carpedm20/naf-tensorflow
continuous-rl deep-learning deep-reinforcement-learning gym reinforcement-learning tensorflow
Last synced: 6 days ago
JSON representation
"Continuous Deep Q-Learning with Model-based Acceleration" in TensorFlow
- Host: GitHub
- URL: https://github.com/carpedm20/naf-tensorflow
- Owner: carpedm20
- License: mit
- Created: 2016-07-06T16:25:42.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2018-07-20T23:40:54.000Z (over 6 years ago)
- Last Synced: 2024-07-31T02:16:21.805Z (4 months ago)
- Topics: continuous-rl, deep-learning, deep-reinforcement-learning, gym, reinforcement-learning, tensorflow
- Language: Python
- Homepage:
- Size: 492 KB
- Stars: 193
- Watchers: 17
- Forks: 59
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Normalized Advantage Functions (NAF) in TensorFlow
TensorFlow implementation of [Continuous Deep q-Learning with Model-based Acceleration](http://arxiv.org/abs/1603.00748).
![algorithm](https://github.com/carpedm20/naf-tensorflow/blob/master/assets/algorithm.png)
## Requirements
- Python 2.7
- [gym](https://github.com/openai/gym)
- [TensorFlow](https://www.tensorflow.org/) 0.9+## Usage
First, install prerequisites with:
$ pip install tqdm gym[all]
To train a model for an environment with a continuous action space:
$ python main.py --env_name=Pendulum-v0 --is_train=True
$ python main.py --env_name=Pendulum-v0 --is_train=True --display=TrueTo test and record the screens with gym:
$ python main.py --env_name=Pendulum-v0 --is_train=False
$ python main.py --env_name=Pendulum-v0 --is_train=False --display=True## Results
Training details of `Pendulum-v0` with different hyperparameters.
$ python main.py --env_name=Pendulum-v0 # dark green
$ python main.py --env_name=Pendulum-v0 --action_fn=tanh # light green
$ python main.py --env_name=Pendulum-v0 --use_batch_norm=True # yellow
$ python main.py --env_name=Pendulum-v0 --use_seperate_networks=True # green![Pendulum-v0_2016-07-15](https://github.com/carpedm20/naf-tensorflow/blob/master/assets/Pendulum-v0_2016-07-15.png)
## References
- [rllab](https://github.com/rllab/rllab.git)
- [keras implementation](https://gym.openai.com/evaluations/eval_CzoNQdPSAm0J3ikTBSTCg)## Author
Taehoon Kim / [@carpedm20](http://carpedm20.github.io/)